scholarly journals Modeling glacial and fluvial landform evolution at large scales using a stream-power approach

2021 ◽  
Vol 9 (4) ◽  
pp. 937-952
Author(s):  
Stefan Hergarten

Abstract. Modeling glacial landform evolution is more challenging than modeling fluvial landform evolution. While several numerical models of large-scale fluvial erosion are available, there are only a few models of glacial erosion, and their application over long time spans requires a high numerical effort. In this paper, a simple formulation of glacial erosion which is similar to the fluvial stream-power model is presented. The model reproduces the occurrence of overdeepenings, hanging valleys, and steps at confluences at least qualitatively. Beyond this, it allows for a seamless coupling to fluvial erosion and sediment transport. The recently published direct numerical scheme for fluvial erosion and sediment transport can be applied to the entire domain, where the numerical effort is only moderately higher than for a purely fluvial system. Simulations over several million years on lattices of several million nodes can be performed on standard PCs. An open-source implementation is freely available as a part of the landform evolution model OpenLEM.

2021 ◽  
Author(s):  
Stefan Hergarten

Abstract. Modeling glacial landform evolution is more challenging than modeling fluvial landform evolution. While several numerical models of large-scale fluvial erosion are available, there are only a few models of glacial erosion, and their application over long time spans requires a high numerical effort. In this paper, a simple formulation of glacial erosion which is similar to the fluvial stream-power model is presented. The model reproduces the occurrence of overdeepenings, hanging valleys, and steps at confluences at least qualitatively. Beyond this, it allows for a seamless coupling to fluvial erosion and sediment transport. The recently published direct numerical scheme for fluvial erosion and sediment transport can be applied to the entire domain, where the numerical effort is only moderately higher than for a purely fluvial system. Simulations over several million years on lattices of several million nodes can be performed on standard PCs. An open-source implementation is freely available as a part of the landform evolution model OpenLEM.


2020 ◽  
Vol 8 (4) ◽  
pp. 841-854
Author(s):  
Stefan Hergarten

Abstract. Most of the recent studies modeling fluvial erosion in the context of tectonic geomorphology focus on the detachment-limited regime. One reason for this simplification is the simple relationship of the constitutive law used here – often called stream-power law – to empirical results on longitudinal river profiles. Another no less important reason lies in the numerical effort that is much higher for transport-limited models than for detachment-limited models. This study proposes a formulation of transport-limited erosion where the relationship to empirical results on river profiles is almost as simple as it is for the stream-power law. As a central point, a direct solver for the fully implicit scheme is presented. This solver requires no iteration for the linear version of the model, allows for arbitrarily large time increments, and is almost as efficient as the established implicit solver for detachment-limited erosion. The numerical scheme can also be applied to linear hybrid models that cover the range between the two end-members of detachment-limited and transport-limited erosion.


2020 ◽  
Author(s):  
Stefan Hergarten

Abstract. Most of the recent studies modeling fluvial erosion in the context of tectonic geomorphology focus on the detachment-limited regime. One reason for this simplification is the direct relationship of the constitutive law used here – often called stream-power law – to empirical results on longitudinal river profiles. Another, not less important reason lies in the numerical effort that is much higher for transport-limited models than for detachment-limited models. This study proposes a simple formulation of transport-limited erosion that is as close to empirical results on river profiles as the stream-power law is. As a central point, a direct solver for the fully implicit scheme is presented. This solver requires no iteration for the linear version of the model, allows for arbitrarily large time increments, and is almost as efficient as the established implicit solver for transport-limited erosion. The numerical scheme can also be applied to linear models between the two extremes of detachment-limited and transport-limited erosion.


2021 ◽  
Author(s):  
Sanjay Giri ◽  
Amin Shakya ◽  
Mohamed Nabi ◽  
Suleyman Naqshband ◽  
Toshiki Iwasaki ◽  
...  

<p>Evolution and transition of bedforms in lowland rivers are micro-scale morphological processes that influence river management decisions. This work builds upon our past efforts that include physics-based modelling, physical experiments and the machine learning (ML) approach to predict bedform features, states as well as associated flow resistance. We revisit our past works and efforts on developing and applying numerical models, from simple to sophisticated, starting with a multi-scale shallow-water model with a dual-grid technique. The model incorporates an adjustment of the local bed shear stress by a slope effect and an additional term that influences bedform feature. Furthermore, we review our work on a vertical two-dimensional model with a free surface flow condition. We explore the effects of different sediment transport approaches such as equilibrium transport with bed slope correction and a non-equilibrium transport with pick-up and deposition. We revisit a sophisticated three-dimensional Large Eddy Simulation (LES) model with an improved sediment transport approach that includes sliding, rolling, and jumping based on a Lagrangian framework. Finally, we discuss about bedform states and transition that are studied using laboratory experiments as well as a theory-guided data science approach that assures logical reasoning to analyze physical phenomena with large amounts of data. A theoretical evaluation of parameters that influence bedform development is carried out, followed by classification of bedform type by using a neural network model.</p><p>In second part, we focus on practical application, and discuss about large-scale numerical models that are being applied in river engineering and management practices. Such models are found to have noticeable inaccuracies and uncertainties associated with various physical and non-physical reasons. A key physical problem of these large-scale numerical models is related to the prediction of evolution and transition of micro-scale bedforms, and associated flow resistance. The evolution and transition of bedforms during rising and falling stages of a flood wave have a noticeable impact on morphology and flow levels in low-land alluvial rivers. The interaction between flow and micro-scale bedforms cannot be considered in a physics-based manner in large-scale numerical models due to the incompatibility between the resolution of the models and the scale of morphological changes. The dynamics of bedforms and the corresponding changes in flow resistance are not captured. As a way forward, we propse a hydrid approach that includes application of the CFD models, mentioned above, to generate a large amount of data in complement with field and laboratory observations, analysis of their reliability based on which developing a ML model. The CFD models can replicate bedform evolution and transition processes as well as associated flow resistance in physics-based manner under steady and varying flow conditions. The hybrid approach of using CFD and ML models can offer a better prediction of flow resistance that can be coupled with large-scale numerical models to improve their performance. The reseach is in progress.</p>


1999 ◽  
Vol 28 ◽  
pp. 282-290 ◽  
Author(s):  
Jean Braun ◽  
Dan Zwartz ◽  
Jonathan H. Tomkin

AbstractWe have developed a new surface-processes model incorporating large-scale fluvial processes, local hill-slope processes and glacial erosion. Ice thickness and velocity are calculated under a shallow-ice approximation. Simulation experiments in fast-growing orogens comparing the efficiencies of fluvial and glacial erosion, where the two are operating simultaneously over several glacial cycles, show that: glacial landscapes can support greater ice masses than fluvial landscapes; glacial valley and lake shapes create a disequilibrium between landform and land-forming process that leads to pulses of high erosion at the end of glacial periods; glacial erosion rates can reach a constant value in a uniformly growing orogen; and glacial erosion is capable of eroding drainage divides when the ice is moderately thick.


2020 ◽  
Vol 12 (4) ◽  
pp. 2775-2786
Author(s):  
Bram C. van Prooijen ◽  
Marion F. S. Tissier ◽  
Floris P. de Wit ◽  
Stuart G. Pearson ◽  
Laura B. Brakenhoff ◽  
...  

Abstract. A large-scale field campaign was carried out on the ebb-tidal delta (ETD) of Ameland Inlet, a basin of the Wadden Sea in the Netherlands, as well as on three transects along the Dutch lower shoreface. The data have been obtained over the years 2017–2018. The most intensive campaign at the ETD of Ameland Inlet was in September 2017. With this campaign, as part of KustGenese2.0 (Coastal Genesis 2.0) and SEAWAD, we aim to gain new knowledge on the processes driving sediment transport and benthic species distribution in such a dynamic environment. These new insights will ultimately help the development of optimal strategies to nourish the Dutch coastal zone in order to prevent coastal erosion and keep up with sea level rise. The dataset obtained from the field campaign consists of (i) single- and multi-beam bathymetry; (ii) pressure, water velocity, wave statistics, turbidity, conductivity, temperature, and bedform morphology on the shoal; (iii) pressure and velocity at six back-barrier locations; (iv) bed composition and macrobenthic species from box cores and vibrocores; (v) discharge measurements through the inlet; (vi) depth and velocity from X-band radar; and (vii) meteorological data. The combination of all these measurements at the same time makes this dataset unique and enables us to investigate the interactions between sediment transport, hydrodynamics, morphology and the benthic ecosystem in more detail. The data provide opportunities to calibrate numerical models to a high level of detail. Furthermore, the open-source datasets can be used for system comparison studies. The data are publicly available at 4TU Centre for Research Data at https://doi.org/10.4121/collection:seawad (Delft University of Technology et al., 2019) and https://doi.org/10.4121/collection:kustgenese2 (Rijkswaterstaat and Deltares, 2019). The datasets are published in netCDF format and follow conventions for CF (Climate and Forecast) metadata. The http://data.4tu.nl (last access: 11 November 2020) site provides keyword searching options and maps with the geographical position of the data.


2013 ◽  
Vol 37 ◽  
pp. 19-25 ◽  
Author(s):  
K. Blanckaert ◽  
G. Constantinescu ◽  
W. Uijttewaal ◽  
Q. Chen

Abstract. Curved river reaches were investigated as an example of river configurations where three-dimensional processes prevail. Similar processes occur, for example, in confluences and bifurcations, or near hydraulic structures such as bridge piers and abutments. Some important processes were investigated in detail in the laboratory, simulated numerically by means of eddy-resolving techniques, and finally parameterized in long-term and large-scale morphodynamic models. Investigated flow processes include secondary flow, large-scale coherent turbulence structures, shear layers and flow separation at the convex inner bank. Secondary flow causes a redistribution of the flow and a transverse inclination of the riverbed, which favour erosion of the outer bank and meander migration. Secondary flow generates vertical velocities that impinge on the riverbed, and are known to increase the erosive capacity of the flow. Large-scale turbulent coherent structures also increase the sediment entrainment and transport capacity. Both processes are not accounted for in sediment transport formulae, which leads to an underestimation of the bend scour and the erosion of the outer bank. Eddy-resolving numerical models are computationally too expensive to be implemented in long-term and large-scale morphodynamic models. But they provide insight in the flow processes and broaden the investigated parameter space. Results from laboratory experiments and eddy-resolving numerical models were at the basis of the development of a new parameterization without curvature restrictions of secondary flow effects, which is applicable in long-term and large-scale morphodynamic models. It also led to the development of a new engineering technique to modify the flow and the bed morphology by means of an air-bubble screen. The rising air bubbles generate secondary flow, which redistributes the patterns of flow, boundary shear stress and sediment transport.


2020 ◽  
Author(s):  
Alejandro Sanchez ◽  
Stanford Gibson ◽  
Cameron Ackerman ◽  
Ian Floyd

<p>The Hydrologic Engineering Center River Analysis System (HEC-RAS) is a free software developed by the United States Army Corps of Engineers for simulating hydraulics, sediment transport, and water quality.  We present on the recent and ongoing developments of non-Newtonian flow and mobile bed modeling within HEC-RAS. The numerical models solve the in one-dimensional (1D) St. Venant equation, and the two-dimensional (2D) Diffusion Wave and Shallow Water Equations with corrections and modifications for non-Newtonian flows and steep slopes. The equations are solved using a combination of Finite-Difference and Finite-Volume methods on unstructured grids (for 2D). Several flow resistance laws are implemented including the Bingham, Coulomb, Herschel-Bulkley, and Voellmy models. Sediment transport is simulated in 2D with a total-load advection-diffusion model with corrections for steep slopes and high concentrations. A subgrid modeling approach is utilized for hydraulics and sediment transport, which allows for larger computational cells while maintaining accuracy. The numerical models have been verified with analytical test cases, and validated with small and large scale physical experiments and field applications. The results demonstrate the applicability of HEC-RAS as a tool for natural hazard studies involving non-Newtonian flows.</p>


2014 ◽  
Vol 2 (1) ◽  
pp. 389-428
Author(s):  
R. M. Headley ◽  
T. A. Ehlers

Abstract. Mountain topography is constructed through a variety of interacting processes. Over glaciological time scales, even simple representations of glacial-flow physics can reproduce many of the distinctive features formed through glacial erosion. However, detailed comparisons at orogen time and length scales hold potential for quantifying the influence of glacial physics in landscape evolution models. We present a comparison using two different numerical models for glacial flow over single and multiple glaciations, within a modified version of the ICE-Cascade landscape evolution model. This model calculates not only glaciological processes but also hillslope and fluvial erosion and sediment transport, isostasy, and temporally and spatially variable orographic precipitation. We compare the predicted erosion patterns using a modified SIA as well as a nested, 3-D Stokes-flow model calculated using COMSOL Multiphysics. Both glacial-flow models predict different patterns in time-averaged erosion rates. However, these results are sensitive to the climate and the ice temperature. For warmer climates with more sliding, the higher-order model has a larger impact on the erosion rate, with variations of almost an order of magnitude. As the erosion influences the basal topography and the ice deformation affects the ice thickness and extent, the higher-order glacial model can lead to variations in total ice-covered that are greater than 30%, again with larger differences for temperate ice. Over multiple glaciations and long-time scales, these results suggest that consideration of higher-order glacial physics may be necessary, particularly in temperate, mountainous settings.


2016 ◽  
Vol 12 (S327) ◽  
pp. 46-59
Author(s):  
I. R. Losada ◽  
J. Warnecke ◽  
K. Glogowski ◽  
M. Roth ◽  
A. Brandenburg ◽  
...  

AbstractSunspots are of basic interest in the study of the Sun. Their relevance ranges from them being an activity indicator of magnetic fields to being the place where coronal mass ejections and flares erupt. They are therefore also an important ingredient of space weather. Their formation, however, is still an unresolved problem in solar physics. Observations utilize just 2D surface information near the spot, but it is debatable how to infer deep structures and properties from local helioseismology. For a long time, it was believed that flux tubes rising from the bottom of the convection zone are the origin of the bipolar sunspot structure seen on the solar surface. However, this theory has been challenged, in particular recently by new surface observation, helioseismic inversions, and numerical models of convective dynamos. In this article we discuss another theoretical approach to the formation of sunspots: the negative effective magnetic pressure instability. This is a large-scale instability, in which the total (kinetic plus magnetic) turbulent pressure can be suppressed in the presence of a weak large-scale magnetic field, leading to a converging downflow, which eventually concentrates the magnetic field within it. Numerical simulations of forced stratified turbulence have been able to produce strong super-equipartition flux concentrations, similar to sunspots at the solar surface. In this framework, sunspots would only form close to the surface due to the instability constraints on stratification and rotation. Additionally, we present some ideas from local helioseismology, where we plan to use the Hankel analysis to study the pre-emergence phase of a sunspot and to constrain its deep structure and formation mechanism.


Sign in / Sign up

Export Citation Format

Share Document