scholarly journals GenChem v1.0 – a chemical pre-processing and testing system for atmospheric modelling

2020 ◽  
Vol 13 (12) ◽  
pp. 6447-6465
Author(s):  
David Simpson ◽  
Robert Bergström ◽  
Alan Briolat ◽  
Hannah Imhof ◽  
John Johansson ◽  
...  

Abstract. This paper outlines the structure and usage of the GenChem system, which includes a chemical pre-processor GenChem.py) and a simple box model (boxChem). GenChem provides scripts and input files for converting chemical equations into differential form for use in atmospheric chemical transport models (CTMs) and/or the boxChem system. Although GenChem is primarily intended for users of the Meteorological Synthesizing Centre – West of the European Monitoring and Evaluation Programme (EMEP MSC-W) CTM and related systems, boxChem can be run as a stand-alone chemical solver, enabling for example easy testing of chemical mechanisms against each other. This paper presents an outline of the usage of the GenChem system, explaining input and output files, and presents some examples of usage. The code needed to run GenChem is released as open-source code under the GNU license.

2020 ◽  
Author(s):  
David Simpson ◽  
Robert Bergström ◽  
Alain Briolat ◽  
Hannah Imhof ◽  
John Johansson ◽  
...  

Abstract. This paper outlines the structure and usage of the GenChem system, which includes a chemical pre-processor (GenChem.py), and a simple box-model (boxChem). GenChem provides scripts and input files for converting chemical equations into differential form for use in atmospheric chemical transport models (CTMs) and/or the boxChem system. Although GenChem is primarily intended for users of the EMEP MSC-W CTM and related systems, boxChem can be run as a stand-alone chemical solver, enabling for exampleeasy testing of chemical mechanisms against each other. This paper presents an outline of the usage of the GenChem system, explaining input and output files, and presents some examples of usage. The code needed to run GenChem is released as open-source code under the GNU license.


2019 ◽  
Vol 4 ◽  
pp. 203-218
Author(s):  
I.N. Kusnetsova ◽  
◽  
I.U. Shalygina ◽  
M.I. Nahaev ◽  
U.V. Tkacheva ◽  
...  

2021 ◽  
Vol 248 ◽  
pp. 118022
Author(s):  
Min Xu ◽  
Jianbing Jin ◽  
Guoqiang Wang ◽  
Arjo Segers ◽  
Tuo Deng ◽  
...  

Author(s):  
Scott D. Chambers ◽  
Elise-Andree Guérette ◽  
Khalia Monk ◽  
Alan D. Griffiths ◽  
Yang Zhang ◽  
...  

We propose a new technique to prepare statistically-robust benchmarking data for evaluating chemical transport model meteorology and air quality parameters within the urban boundary layer. The approach employs atmospheric class-typing, using nocturnal radon measurements to assign atmospheric mixing classes, and can be applied temporally (across the diurnal cycle), or spatially (to create angular distributions of pollutants as a top-down constraint on emissions inventories). In this study only a short (<1-month) campaign is used, but grouping of the relative mixing classes based on nocturnal mean radon concentrations can be adjusted according to dataset length (i.e., number of days per category), or desired range of within-class variability. Calculating hourly distributions of observed and simulated values across diurnal composites of each class-type helps to: (i) bridge the gap between scales of simulation and observation, (ii) represent the variability associated with spatial and temporal heterogeneity of sources and meteorology without being confused by it, and (iii) provide an objective way to group results over whole diurnal cycles that separates ‘natural complicating factors’ (synoptic non-stationarity, rainfall, mesoscale motions, extreme stability, etc.) from problems related to parameterizations, or between-model differences. We demonstrate the utility of this technique using output from a suite of seven contemporary regional forecast and chemical transport models. Meteorological model skill varied across the diurnal cycle for all models, with an additional dependence on the atmospheric mixing class that varied between models. From an air quality perspective, model skill regarding the duration and magnitude of morning and evening “rush hour” pollution events varied strongly as a function of mixing class. Model skill was typically the lowest when public exposure would have been the highest, which has important implications for assessing potential health risks in new and rapidly evolving urban regions, and also for prioritizing the areas of model improvement for future applications.


2016 ◽  
Vol 9 (7) ◽  
pp. 2753-2779 ◽  
Author(s):  
Steffen Beirle ◽  
Christoph Hörmann ◽  
Patrick Jöckel ◽  
Song Liu ◽  
Marloes Penning de Vries ◽  
...  

Abstract. The STRatospheric Estimation Algorithm from Mainz (STREAM) determines stratospheric columns of NO2 which are needed for the retrieval of tropospheric columns from satellite observations. It is based on the total column measurements over clean, remote regions as well as over clouded scenes where the tropospheric column is effectively shielded. The contribution of individual satellite measurements to the stratospheric estimate is controlled by various weighting factors. STREAM is a flexible and robust algorithm and does not require input from chemical transport models. It was developed as a verification algorithm for the upcoming satellite instrument TROPOMI, as a complement to the operational stratospheric correction based on data assimilation. STREAM was successfully applied to the UV/vis satellite instruments GOME 1/2, SCIAMACHY, and OMI. It overcomes some of the artifacts of previous algorithms, as it is capable of reproducing gradients of stratospheric NO2, e.g., related to the polar vortex, and reduces interpolation errors over continents. Based on synthetic input data, the uncertainty of STREAM was quantified as about 0.1–0.2 × 1015 molecules cm−2, in accordance with the typical deviations between stratospheric estimates from different algorithms compared in this study.


Tellus B ◽  
2015 ◽  
Vol 67 (1) ◽  
pp. 28292 ◽  
Author(s):  
Fabio Boschetti ◽  
Huilin Chen ◽  
Valerie Thouret ◽  
Philippe Nedelec ◽  
Greet Janssens-Maenhout ◽  
...  

Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 488 ◽  
Author(s):  
Syuichi Itahashi ◽  
Kazuyo Yamaji ◽  
Satoru Chatani ◽  
Kunihiro Hisatsune ◽  
Shinji Saito ◽  
...  

Sulfate aerosol (SO42−) is a major component of particulate matter in Japan. The Japanese model intercomparison study, J-STREAM, found that although SO42− is well captured by models, it is underestimated during winter. In the first phase of J-STREAM, we refined the Fe- and Mn-catalyzed oxidation and partly improved the underestimation. The winter haze in December 2016 was a target period in the second phase. The results from the Community Multiscale Air Quality (CMAQ) and Comprehensive Air quality Model with eXtentions (CAMx) regional chemical transport models were compared with observations from the network over Japan and intensive observations at Nagoya and Tokyo. Statistical analysis showed both models satisfied the suggested model performance criteria. CMAQ sensitivity simulations explained the improvements in model performance. CMAQ modeled lower SO42− concentrations than CAMx, despite increased aqueous oxidation via the metal catalysis pathway and NO2 reaction in CMAQ. Deposition explained this difference. A scatter plot demonstrated that the lower SO42− concentration in CMAQ than in CAMx arose from the lower SO2 concentration and higher SO42− wet deposition in CMAQ. The dry deposition velocity caused the difference in SO2 concentration. These results suggest the importance of deposition in improving our understanding of ambient concentration behavior.


Sign in / Sign up

Export Citation Format

Share Document