scholarly journals Impact of increased resolution on long-standing biases in HighResMIP-PRIMAVERA climate models

2022 ◽  
Vol 15 (1) ◽  
pp. 269-289
Author(s):  
Eduardo Moreno-Chamarro ◽  
Louis-Philippe Caron ◽  
Saskia Loosveldt Tomas ◽  
Javier Vegas-Regidor ◽  
Oliver Gutjahr ◽  
...  

Abstract. We examine the influence of increased resolution on four long-standing biases using five different climate models developed within the PRIMAVERA project. The biases are the warm eastern tropical oceans, the double Intertropical Convergence Zone (ITCZ), the warm Southern Ocean, and the cold North Atlantic. Atmosphere resolution increases from ∼100–200 to ∼25–50 km, and ocean resolution increases from ∼1∘ (eddy-parametrized) to ∼0.25∘ (eddy-present). For one model, ocean resolution also reaches 1/12∘ (eddy-rich). The ensemble mean and individual fully coupled general circulation models and their atmosphere-only versions are compared with satellite observations and the ERA5 reanalysis over the period 1980–2014. The four studied biases appear in all the low-resolution coupled models to some extent, although the Southern Ocean warm bias is the least persistent across individual models. In the ensemble mean, increased resolution reduces the surface warm bias and the associated cloud cover and precipitation biases over the eastern tropical oceans, particularly over the tropical South Atlantic. Linked to this and to the improvement in the precipitation distribution over the western tropical Pacific, the double-ITCZ bias is also reduced with increased resolution. The Southern Ocean warm bias increases or remains unchanged at higher resolution, with small reductions in the regional cloud cover and net cloud radiative effect biases. The North Atlantic cold bias is also reduced at higher resolution, albeit at the expense of a new warm bias that emerges in the Labrador Sea related to excessive ocean deep mixing in the region, especially in the ORCA025 ocean model. Overall, the impact of increased resolution on the surface temperature biases is model-dependent in the coupled models. In the atmosphere-only models, increased resolution leads to very modest or no reduction in the studied biases. Thus, both the coupled and atmosphere-only models still show large biases in tropical precipitation and cloud cover, and in midlatitude zonal winds at higher resolutions, with little change in their global biases for temperature, precipitation, cloud cover, and net cloud radiative effect. Our analysis finds no clear reductions in the studied biases due to the increase in atmosphere resolution up to 25–50 km, in ocean resolution up to 0.25∘, or in both. Our study thus adds to evidence that further improved model physics, tuning, and even finer resolutions might be necessary.

2021 ◽  
Author(s):  
Eduardo Moreno-Chamarro ◽  
Louis-Philippe Caron ◽  
Saskia Loosveldt Tomas ◽  
Oliver Gutjahr ◽  
Marie-Pierre Moine ◽  
...  

Abstract. We examine the impacts of increased resolution on four long-standing biases using five different climate models developed within the PRIMAVERA project. Atmospheric resolution is increased from ~100–200 km to ~25–50 km, and ocean resolution is increased from ~1° (i.e., eddy-parametrized) to ~0.25° (i.e., eddy-present). For one model, ocean resolution is also increased to 1/12° (i.e., eddy-rich). Fully-coupled general circulation models and their atmosphere-only versions are compared with observations and reanalysis of near-surface temperature, precipitation, cloud cover, net cloud radiative effect, and zonal wind over the period 1980–2014. Both the ensemble mean and individual models are analyzed. Increased resolution especially in the atmosphere helps reduce the surface warm bias over the tropical upwelling regions in the coupled models, with further improvements in the cloud cover and precipitation biases particularly over the tropical South Atlantic. Related to this and to the improvement in the precipitation distribution over the western tropical Pacific, the double Intertropical Convergence Zone bias also weakens with resolution. Overall, increased ocean resolution from ~1° to ~0.25° offers limited improvements or even bias degradation in some models, although an eddy-rich ocean resolution seems beneficial for reducing the biases in North Atlantic temperatures and Gulf Stream path. Despite the improvements, however, large biases in precipitation and cloud cover persist over the whole tropics as well as in the upper-troposphere zonal winds at mid-latitudes in coupled and atmosphere-only models at higher resolutions. The Southern Ocean warm bias also worsens or persists in some coupled models. And a new warm bias emerges in the Labrador Sea in all the high-resolution coupled models. The analysis of the PRIMAVERA models therefore suggests that, to reduce biases, i) increased atmosphere resolution up to ~25–50 km alone might not be sufficient and ii) an eddy-rich ocean resolution might be needed. The study thus adds to evidence that further improved model physics and tuning might be necessary in addition to increased resolution to mitigate biases.


2018 ◽  
Vol 31 (22) ◽  
pp. 9293-9312 ◽  
Author(s):  
A. Lacour ◽  
H. Chepfer ◽  
N. B. Miller ◽  
M. D. Shupe ◽  
V. Noel ◽  
...  

Using lidar and radiative flux observations from space and ground, and a lidar simulator, we evaluate clouds simulated by climate models over the Greenland ice sheet, including predicted cloud cover, cloud fraction profile, cloud opacity, and surface cloud radiative effects. The representation of clouds over Greenland is a central concern for the models because clouds impact ice sheet surface melt. We find that over Greenland, most of the models have insufficient cloud cover during summer. In addition, all models create too few nonopaque, liquid-containing clouds optically thin enough to let direct solar radiation reach the surface (−1% to −3.5% at the ground level). Some models create too few opaque clouds. In most climate models, the cloud properties biases identified over all Greenland also apply at Summit, Greenland, proving the value of the ground observatory in model evaluation. At Summit, climate models underestimate cloud radiative effect (CRE) at the surface, especially in summer. The primary driver of the summer CRE biases compared to observations is the underestimation of the cloud cover in summer (−46% to −21%), which leads to an underestimated longwave radiative warming effect (CRELW = −35.7 to −13.6 W m−2 compared to the ground observations) and an underestimated shortwave cooling effect (CRESW = +1.5 to +10.5 W m−2 compared to the ground observations). Overall, the simulated clouds do not radiatively warm the surface as much as observed.


2021 ◽  
Author(s):  
Assia Arouf

<p>Clouds exert important effects on Earth's surface energy balance through their effects on longwave (LW) and shortwave (SW) radiation. Indeed, clouds radiatively warm the surface in the LW domain by emitting LW radiation back to the ground. The surface LW cloud radiative effect (CRE) quantifies this warming effect. To study the impact of clouds on the interanual natural climate variability, we need to observe them on a long time scale over all kinds of surfaces. The CALIPSO space lidar provides these observations by sampling the atmosphere along its track over all kinds of surfaces for over than 14 years (2006-2020).</p><p>In this work, we propose new estimates of the surface LW CRE from space-based lidar observations only. Indeed, we show from 1D atmospheric column radiative transfer calculations, that surface LW CRE at sea level linearly decreases with the cloud altitude. Thus, these computations allow to establish simple relationships between the surface LW CRE, and five cloud properties observed by the CALIPSO space lidar: the opaque cloud cover and altitude, the thin cloud cover, altitude, and emissivity. Over the 2008–2011, CALIPSO-based retrieval (27.7 W m<sup>-2</sup>) is 1.2 W m<sup>-2</sup> larger than the one derived from combined space radar, lidar, and radiometer observations. Over the 2008–2018 period, the global mean CALIPSO-based retrieval (27.5 W m<sup>-2</sup>) is 0.1 W m<sup>-2</sup> larger than the one derived from CERES space radiometer. Our estimates show that globally, opaque clouds warm the surface by 23.3 W m<sup>-2</sup> and thin clouds contribute only by 4.2 W m<sup>-2</sup>. At high latitudes North and South over oceans, the largest surface LW opaque CRE occurs in fall (40.4 W m<sup>-2</sup>, 31.6 W m<sup>-2</sup>) due to the formation of additional opaque low clouds after sea ice melting over a warmer ocean.</p><p>To quantify the cloud property that drives the temporal variations of the surface LW CRE, the surface LW CRE needs to be related by simple relationships to a finite number of cloud properties such as cloud opacity, cloud altitude and cloud cover. This study allows a decomposition and attribution approach of the surface LW CRE variations and shows that they are driven by the variations occurring in the opaque cloud properties. Moreover, opaque cloud cover drives over than 73% of global surface LW CRE interannual variations.</p>


2020 ◽  
Vol 50 (8) ◽  
pp. 2151-2172 ◽  
Author(s):  
Shantong Sun ◽  
Andrew F. Thompson ◽  
Ian Eisenman

AbstractClimate models consistently project (i) a decline in the formation of North Atlantic Deep Water (NADW) and (ii) a strengthening of the Southern Hemisphere westerly winds in response to anthropogenic greenhouse gas forcing. These two processes suggest potentially conflicting tendencies of the Atlantic meridional overturning circulation (AMOC): a weakening AMOC due to changes in the North Atlantic but a strengthening AMOC due to changes in the Southern Ocean. Here we focus on the transient evolution of the global ocean overturning circulation in response to a perturbation to the NADW formation rate. We propose that the adjustment of the Indo-Pacific overturning circulation is a critical component in mediating AMOC changes. Using a hierarchy of ocean and climate models, we show that the Indo-Pacific overturning circulation provides the first response to AMOC changes through wave processes, whereas the Southern Ocean overturning circulation responds on longer (centennial to millennial) time scales that are determined by eddy diffusion processes. Changes in the Indo-Pacific overturning circulation compensate AMOC changes, which allows the Southern Ocean overturning circulation to evolve independently of the AMOC, at least over time scales up to many decades. In a warming climate, the Indo-Pacific develops an overturning circulation anomaly associated with the weakening AMOC that is characterized by a northward transport close to the surface and a southward transport in the deep ocean, which could effectively redistribute heat between the basins. Our results highlight the importance of interbasin exchange in the response of the global ocean overturning circulation to a changing climate.


2021 ◽  
Author(s):  
Miguel Perpina ◽  
Vincent Noel ◽  
Helene Chepfer ◽  
Rodrigo Guzman ◽  
Artem Feofilov

<p><span>Climate models predict a weakening of the tropical atmospheric circulation, more specifically a slowdown of Hadley and Walker circulations. Many climate models predict that global warming will have a major impact on cloud properties, including their geographic and vertical distribution. Climate feedbacks from clouds, which amplify warming when positive, are today the main source of uncertainty in climate forecasts. Tropical clouds play a key role in the redistribution of solar energy and their evolution will likely affect climate. Therefore, it is crucial to better understand how tropical clouds will evolve in a changing climate. Among cloud properties, the vertical distribution is sensitive to climate change. Active sensors integrated into satellites, such as CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization), make it possible to obtain a detailed vertical distribution of clouds. CALIOP measurements and calibration are more stable over time and more precise than passive remote sensing satellite detectors. CALIOP observations can be simulated in the atmospheric conditions predicted by climate models using lidar simulators such as COSP (</span><span>CFMIP Observation Simulator Package). Moreover, </span><span>cloud properties directly drive the Cloud Radiative Effect (CRE). Understanding how models predict cloud vertical distribution will evolve in the future has implications for how models predict the Cloud Radiative Effect (CRE) at the Top of the Atmosphere (TOA) will evolve in the future. </span></p><p><span>The purpose of our study is to compare, firstly, based on satellite observations (GOCCP) and reanalyzes (ERA5), we will establish the relationship between atmospheric dynamic circulation, opaque cloud properties and TOA CRE. Then, we will compare this observed relationship with the one found in climate model simulations of current climate conditions (CESM1 and IPSL-CM6). Finally, we will identify how model biases in present climate conditions influence the cloud feedback spread between models in a warmer climate.</span></p>


2021 ◽  
pp. 1-64
Author(s):  
Man Yue ◽  
Minghuai Wang ◽  
Jianping Guo ◽  
Haipeng Zhang ◽  
Xinyi Dong ◽  
...  

AbstractThe planetary boundary layer (PBL) plays an essential role in climate and air quality simulations. Nevertheless, large uncertainties remain in understanding the drivers for long-term trend of PBL height (PBLH) and its simulation. Here we combinate the radiosonde data and reanalysis datasets to analyze PBLH long-term trends over China, and to further explore the performance of CMIP6 climate models in simulating these trends. Results show that the observed long-term “positive to negative” trend shift of PBLH is related to the variation in the surface upward sensible heat flux (SHFLX), and the SHFLX is further controlled by the synergistic effect of low cloud cover (LCC) and soil moisture (SM) changes. Variabilities in LCC and SM directly influence the energy balance via surface net downward shortwave flux (SWF) and the latent heat flux (LHFLX), respectively. The CMIP6 climate models, however, cannot reproduce the observed PBLH long-term trend shift over China. The CMIP6 results illustrate an overwhelming continuous downward PBLH trend during the 1979–2014 period, which is largely caused by the poor capability in simulating long-term variations of cloud radiative effect. Our results reveal that the long-term cloud radiative effect simulation is critical for CMIP6 models in reproducing the long-term trend of PBLH. This study highlights the importance of processes associated with LCC and SM in modulating PBLH long-term variations and calls attentions to improve these processes in climate models in order to improve the PBLH long-term trend simulations.


2020 ◽  
Author(s):  
Hui Su ◽  
Yuan Wang ◽  
Jonathan Jiang ◽  
Feng Xu ◽  
Yuk Yung

<p>Ice cloud particle size is important to determining ice cloud radiative effect and precipitating rate. However, there is a lack of accurate ice particle effective radius (R<sub>ei</sub>) observation on the global scale and the parameterization of R<sub>ei</sub> in climate models is poorly constrained. We conduct a modeling study to assess the sensitivity of climate simulations to R<sub>ei</sub>. Perturbations to R<sub>ei</sub> are represented in ice fall speed parameterization and radiation scheme, respectively, in NCAR CESM1 model with a slab ocean configuration. We show that an increase in ice fall speed due to a larger R<sub>ei</sub> results in a longwave cooling dominating over a shortwave warming, a global mean surface temperature decrease, and precipitation suppression. Similar longwave and shortwave cloud radiative effect changes occur when R<sub>ei</sub> is perturbed in the radiation scheme. Perturbing falling snow particle size (R<sub>es</sub>) results in much smaller changes in the climate responses. We further show that varying R<sub>ei</sub> and R<sub>es</sub> by 50% to 200% relative to the control experiment can cause climate sensitivity to differ by +12.3% to −6.2%. A future mission under design with combined multi-frequency microwave radiometers and cloud radar can reduce the uncertainty ranges of R<sub>ei</sub> and R<sub>es</sub> from a factor of 2 to ±25%, which would help reducing the climate sensitivity uncertainty pertaining to ice cloud particle size by approximately 60%.</p><p> </p>


2016 ◽  
Author(s):  
Elisa T. Sena ◽  
Allison McComiskey ◽  
Graham Feingold

Abstract. Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influences of aerosol particles and meteorological descriptors on instantaneous cloud albedo and radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) Program over the Southern Great Plains are used. A broad statistical analysis was performed on 14-years of coincident measurements of low clouds, aerosol and meteorological properties. Two cases representing conflicting results regarding the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique, and averaging scale. For this continental site, the results indicate that the influence of aerosol on shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects.


2018 ◽  
Vol 31 (13) ◽  
pp. 5273-5291 ◽  
Author(s):  
Peter G. Hill ◽  
Richard P. Allan ◽  
J. Christine Chiu ◽  
Alejandro Bodas-Salcedo ◽  
Peter Knippertz

The contribution of cloud to the radiation budget of southern West Africa (SWA) is poorly understood and yet it is important for understanding regional monsoon evolution and for evaluating and improving climate models, which have large biases in this region. Radiative transfer calculations applied to atmospheric profiles obtained from the CERES– CloudSat–CALIPSO–MODIS (CCCM) dataset are used to investigate the effects of 12 different cloud types (defined by their vertical structure) on the regional energy budget of SWA (5°–10°N, 8°W–8°E) during June–September. We show that the large regional mean cloud radiative effect in SWA is due to nonnegligible contributions from many different cloud types; eight cloud types have a cloud fraction larger than 5% and contribute at least 5% of the regional mean shortwave cloud radiative effect at the top of the atmosphere. Low clouds, which are poorly observed by passive satellite measurements, were found to cause net radiative cooling of the atmosphere, which reduces the heating from other cloud types by approximately 10%. The sensitivity of the radiation budget to underestimating low-cloud cover is also investigated. The radiative effect of missing low cloud is found to be up to approximately −25 W m−2 for upwelling shortwave irradiance at the top of the atmosphere and 35 W m−2 for downwelling shortwave irradiance at the surface.


2017 ◽  
Vol 30 (8) ◽  
pp. 2785-2810 ◽  
Author(s):  
Yohan Ruprich-Robert ◽  
Rym Msadek ◽  
Frederic Castruccio ◽  
Stephen Yeager ◽  
Tom Delworth ◽  
...  

The climate impacts of the observed Atlantic multidecadal variability (AMV) are investigated using the GFDL CM2.1 and the NCAR CESM1 coupled climate models. The model North Atlantic sea surface temperatures are restored to fixed anomalies corresponding to an estimate of the internally driven component of the observed AMV. Both models show that during boreal summer the AMV alters the Walker circulation and generates precipitation anomalies over the whole tropical belt. A warm phase of the AMV yields reduced precipitation over the western United States, drier conditions over the Mediterranean basin, and wetter conditions over northern Europe. During boreal winter, the AMV modulates by a factor of about 2 the frequency of occurrence of El Niño and La Niña events. This response is associated with anomalies over the Pacific that project onto the interdecadal Pacific oscillation pattern (i.e., Pacific decadal oscillation–like anomalies in the Northern Hemisphere and a symmetrical pattern in the Southern Hemisphere). This winter response is a lagged adjustment of the Pacific Ocean to the AMV forcing in summer. Most of the simulated global-scale impacts are driven by the tropical part of the AMV, except for the winter North Atlantic Oscillation–like response over the North Atlantic–European region, which is driven by both the subpolar and tropical parts of the AMV. The teleconnections between the Pacific and Atlantic basins alter the direct North Atlantic local response to the AMV, which highlights the importance of using a global coupled framework to investigate the climate impacts of the AMV. The similarity of the two model responses gives confidence that impacts described in this paper are robust.


Sign in / Sign up

Export Citation Format

Share Document