scholarly journals YAC 1.2.0: An extendable coupling software for Earth system modelling

Author(s):  
M. Hanke ◽  
R. Redler ◽  
T. Holfeld ◽  
M. Yastremsky

Abstract. A light-weight software framework has been developed as a library to realise the coupling of Earth system model components. The software provides a parallelised 2-dimensional neighbourhood search, interpolation, and communication for the coupling between any two model components. The software offers flexible coupling of physical fields defined on regular and irregular grids on the sphere without a priori assumptions about the particular grid structure or grid element types. All supported grids can be combined with any of the supported interpolations. We describe our approach and provide an overview about some of the algorithms we are using and the implemented functionality. The parallel performance is examined with a set of realistic use cases. The coupling software is now used for the coupling of the model components in the Icosahedral nonhydrostatic (ICON) general circulation model.

2016 ◽  
Vol 9 (8) ◽  
pp. 2755-2769 ◽  
Author(s):  
Moritz Hanke ◽  
René Redler ◽  
Teresa Holfeld ◽  
Maxim Yastremsky

Abstract. A lightweight software library has been developed to realise the coupling of Earth system model components. The software provides parallelised two-dimensional neighbourhood search, interpolation, and communication for the coupling between any two model components. The software offers flexible coupling of physical fields defined on regular and irregular grids on the sphere without a priori assumptions about grid structure or grid element types. All supported grids can be combined with any of the supported interpolations. We describe the new aspects of our approach and provide an overview of the implemented functionality and of some algorithms we use. Preliminary performance measurements for a set of realistic use cases are presented to demonstrate the potential performance and scalability of our approach. YAC 1.2.0 is now used for the coupling of the model components in the Icosahedral Nonhydrostatic (ICON) general circulation model.


2012 ◽  
Vol 8 (4) ◽  
pp. 3277-3343 ◽  
Author(s):  
R. Ohgaito ◽  
T. Sueyoshi ◽  
A. Abe-Ouchi ◽  
T. Hajima ◽  
S. Watanabe ◽  
...  

Abstract. The importance of evaluating models using paleoclimate simulations is becoming more recognized in efforts to improve climate projection. To evaluate an integrated Earth System Model, MIROC-ESM, we performed simulations in time-slice experiments for the mid-Holocene (6000 yr before present, 6 ka) and preindustrial (1850 AD) times under the protocol of the Coupled Model Intercomparison Project 5/Paleoclimate Modelling Intercomparison Project 3. We first overview the simulated global climates by comparing with simulations using a previous version of the MIROC model (MIROC3), which is an atmosphere-ocean coupled general circulation model, and then comprehensively discuss various aspects of climate change with 6 ka forcing. We also discuss the 6 ka African monsoon activity. The 6 ka precipitation change over northern Africa according to MIROC-ESM does not differ dramatically from that obtained with MIROC3, which means that newly developed components such as dynamic vegetation and improvements in the atmospheric processes do not have significant impacts on representing the 6 ka monsoon change suggested by proxy records. Although there is no drastic difference in the African monsoon representation between the two models, there are small but significant differences in the precipitation enhancement in MIROC-ESM, which can be related to the representation of the sea surface temperature rather than the vegetation coupling, at least in MIROC-ESM.


2020 ◽  
Vol 13 (9) ◽  
pp. 4443-4458
Author(s):  
Peter A. Bogenschutz ◽  
Shuaiqi Tang ◽  
Peter M. Caldwell ◽  
Shaocheng Xie ◽  
Wuyin Lin ◽  
...  

Abstract. The single-column model (SCM) functionality of the Energy Exascale Earth System Model version 1 (E3SMv1) is described in this paper. The E3SM SCM was adopted from the SCM used in the Community Atmosphere Model (CAM) but has evolved significantly since then. We describe changes made to the aerosol specification in the SCM, idealizations, and developments made so that the SCM uses the same dynamical core as the full general circulation model (GCM) component. Based on these changes, we describe and demonstrate the seamless capability to “replay” a GCM column using the SCM. We give an overview of the E3SM case library and briefly describe which cases may serve as useful proxies for replicating and investigate some long-standing biases in the full GCM runs while demonstrating that the E3SM SCM is an efficient tool for both model development and evaluation.


2016 ◽  
Vol 9 (9) ◽  
pp. 3347-3361 ◽  
Author(s):  
Philip B. Holden ◽  
Neil R. Edwards ◽  
Klaus Fraedrich ◽  
Edilbert Kirk ◽  
Frank Lunkeit ◽  
...  

Abstract. We describe the development, tuning and climate of Planet Simulator (PLASIM)–Grid-ENabled Integrated Earth system model (GENIE), a new intermediate complexity Atmosphere–Ocean General Circulation Model (AOGCM), built by coupling the Planet Simulator to the ocean, sea-ice and land-surface components of the GENIE Earth system model. PLASIM–GENIE supersedes GENIE-2, a coupling of GENIE to the Reading Intermediate General Circulation Model (IGCM). The primitive-equation atmosphere includes chaotic, three-dimensional (3-D) motion and interactive radiation and clouds, and dominates the computational load compared to the relatively simpler frictional-geostrophic ocean, which neglects momentum advection. The model is most appropriate for long-timescale or large ensemble studies where numerical efficiency is prioritised, but lack of data necessitates an internally consistent, coupled calculation of both oceanic and atmospheric fields. A 1000-year simulation with PLASIM–GENIE requires approximately 2 weeks on a single node of a 2.1 GHz AMD 6172 CPU. We demonstrate the tractability of PLASIM–GENIE ensembles by deriving a subjective tuning of the model with a 50-member ensemble of 1000-year simulations. The simulated climate is presented considering (i) global fields of seasonal surface air temperature, precipitation, wind, solar and thermal radiation, with comparisons to reanalysis data; (ii) vegetation carbon, soil moisture and aridity index; and (iii) sea surface temperature, salinity and ocean circulation. Considering its resolution, PLASIM–GENIE reproduces the main features of the climate system well and demonstrates usefulness for a wide range of applications.


2020 ◽  
Author(s):  
Peter A. Bogenschutz ◽  
Shuaiqi Tang ◽  
Peter M. Caldwell ◽  
Shaocheng Xie ◽  
Wuyin Lin ◽  
...  

Abstract. The single column model (SCM) functionality of the Energy Exascale Earth System Model version 1 (E3SMv1) is described in this paper. The E3SM SCM was adopted from the SCM used in the Community Atmosphere Model (CAM), but has evolved significantly since then. We describe changes made to the aerosol specification in the SCM, idealizations, and developments made so that the SCM uses the same dynamical core as the full general circulation model (GCM) component. Based on these changes, we describe and demonstrate the seamless capability to ``replay" a GCM column using the SCM. We give an overview of the E3SM case library and briefly describe which cases may serve as useful proxies for replicating and investigate some long standing biases in the full GCM runs, while demonstrating that the E3SM SCM is an efficient tool for both model development and evaluation.


2018 ◽  
Vol 11 (9) ◽  
pp. 3781-3794 ◽  
Author(s):  
Joy Merwin Monteiro ◽  
Jeremy McGibbon ◽  
Rodrigo Caballero

Abstract. sympl (System for Modelling Planets) and climt (Climate Modelling and Diagnostics Toolkit) are an attempt to rethink climate modelling frameworks from the ground up. The aim is to use expressive data structures available in the scientific Python ecosystem along with best practices in software design to allow scientists to easily and reliably combine model components to represent the climate system at a desired level of complexity and to enable users to fully understand what the model is doing. sympl is a framework which formulates the model in terms of a state that gets evolved forward in time or modified within a specific time by well-defined components. sympl's design facilitates building models that are self-documenting, are highly interoperable, and provide fine-grained control over model components and behaviour. sympl components contain all relevant information about the input they expect and output that they provide. Components are designed to be easily interchanged, even when they rely on different units or array configurations. sympl provides basic functions and objects which could be used in any type of Earth system model. climt is an Earth system modelling toolkit that contains scientific components built using sympl base objects. These include both pure Python components and wrapped Fortran libraries. climt provides functionality requiring model-specific assumptions, such as state initialization and grid configuration. climt's programming interface designed to be easy to use and thus appealing to a wide audience. Model building, configuration and execution are performed through a Python script (or Jupyter Notebook), enabling researchers to build an end-to-end Python-based pipeline along with popular Python data analysis and visualization tools.


2021 ◽  
pp. 1-50
Author(s):  
Marianne Pietschnig ◽  
Abigail L. S. Swann ◽  
F. Hugo Lambert ◽  
Geoffrey K. Vallis

AbstractFuture projections of precipitation change over tropical land are often enhanced by vegetation responses to CO2 forcing in Earth System Models. Projected decreases in rainfall over the Amazon basin and increases over the Maritime Continent are both stronger when plant physiological changes are modelled than if these changes are neglected, but the reasons for this amplification remain unclear. The responses of vegetation to increasing CO2 levels are complex and uncertain, including possible decreases in stomatal conductance and increases in leaf area index due to CO2-fertilisation. Our results from an idealised Atmospheric General Circulation Model show that the amplification of rainfall changes occurs even when we use a simplified vegetation parameterisation based solely on CO2-driven decreases in stomatal conductance, indicating that this mechanism plays a key role in complex model projections. Based on simulations with rectangular continentswe find that reducing terrestrial evaporation to zero with increasing CO2 notably leads to enhanced rainfall over a narrow island. Strong heating and ascent over the island trigger moisture advection from the surrounding ocean. In contrast, over larger continents rainfall depends on continental evaporation. Simulations with two rectangular continents representing South America and Africa reveal that the stronger decrease in rainfall over the Amazon basin seen in Earth System Models is due to a combination of local and remote effects, which are fundamentally connected to South America’s size and its location with respect to Africa. The response of tropical rainfall to changes in evapotranspiration is thus connected to size and configuration of the continents.


2019 ◽  
Vol 12 (11) ◽  
pp. 4823-4873 ◽  
Author(s):  
Neil C. Swart ◽  
Jason N. S. Cole ◽  
Viatcheslav V. Kharin ◽  
Mike Lazare ◽  
John F. Scinocca ◽  
...  

Abstract. The Canadian Earth System Model version 5 (CanESM5) is a global model developed to simulate historical climate change and variability, to make centennial-scale projections of future climate, and to produce initialized seasonal and decadal predictions. This paper describes the model components and their coupling, as well as various aspects of model development, including tuning, optimization, and a reproducibility strategy. We also document the stability of the model using a long control simulation, quantify the model's ability to reproduce large-scale features of the historical climate, and evaluate the response of the model to external forcing. CanESM5 is comprised of three-dimensional atmosphere (T63 spectral resolution equivalent roughly to 2.8∘) and ocean (nominally 1∘) general circulation models, a sea-ice model, a land surface scheme, and explicit land and ocean carbon cycle models. The model features relatively coarse resolution and high throughput, which facilitates the production of large ensembles. CanESM5 has a notably higher equilibrium climate sensitivity (5.6 K) than its predecessor, CanESM2 (3.7 K), which we briefly discuss, along with simulated changes over the historical period. CanESM5 simulations contribute to the Coupled Model Intercomparison Project phase 6 (CMIP6) and will be employed for climate science and service applications in Canada.


2018 ◽  
Author(s):  
Ufuk Utku Turuncoglu

Abstract. The data volume being produced by regional and global multi-component earth system models are rapidly increasing due to the improved spatial and temporal resolution of the model components, sophistication of the used numerical models in terms of represented physical processes and their non-linear complex interactions. In particular, very short time steps have to be defined in multi-component and multi-scale non-hydrostatic modelling systems to represent the evolution of the fast-moving processes such as turbulence, extra-tropical cyclones, convective lines, jet streams, internal waves, vertical turbulent mixing and surface gravity waves. Consequently, the used small time steps cause extra computation and disk I/O overhead in the used modelling system even if today's most powerful high-performance computing and data storage systems are being considered. Analysis of the high volume of data from multiple earth system model components at different temporal and spatial resolution also poses a challenging problem to efficiently perform integrated data analysis of the massive amounts of data by relying on the conventional post-processing methods available today. This study basically aims to explore the feasibility and added value of integrating existing in-situ visualization and data analysis methods with the model coupling framework (ESMF) to increase interoperability between multi-component simulation code and data processing pipelines by providing easy to use, efficient, generic and standardized modeling environment for earth system science applications. The new data analysis approach enables simultaneous analysis of the vast amount of data produced by multi-component regional earth system models (atmosphere, ocean etc.) during the run process. The methodology aims to create an integrated modeling environment for analyzing fast-moving processes and their evolution in both time and space to support better understanding of the underplaying physical mechanisms. The state-of-art approach can also be used to solve common problems in earth system model development workflow such as designing new sub-grid scale parametrizations (convection, air–sea interaction etc.) that requires inspecting the integrated model behavior in a higher temporal and spatial scale during the run or supporting visual debugging of the multi-component modeling systems, which usually are not facilitated by existing model coupling libraries and modeling systems.


Sign in / Sign up

Export Citation Format

Share Document