scholarly journals Reviewer comments to "A multi-level canopy radiative transfer scheme for ORCHIDEE (SVN r2566), based on a domain-averaged structure factor"

2017 ◽  
Author(s):  
Anonymous
2016 ◽  
Author(s):  
Matthew J. McGrath ◽  
James Ryder ◽  
Bernard Pinty ◽  
Juliane Otto ◽  
Kim Naudts ◽  
...  

Abstract. In order to better simulate heat fluxes over multilayer ecosystems, in particular tropical forests and savannahs, the next generation of Earth system models will likely include vertically-resolved vegetation structure and multi-level energy budgets. We present here a multi-level radiation transfer scheme which is capable of being used in conjunction with such methods. It is based on a previously established scheme which encapsulates the three dimensional nature of canopies, through the use of a domain-averaged structure factor, referred to here as the effective leaf area index. The fluxes are tracked throughout the canopy in an iterative fashion until they escape into the atmosphere or are absorbed by the canopy or soil; this approach explicitly includes multiple scattering between the canopy layers. A series of tests show that the results from the two-layer case are in acceptable agreement with those from the single layer, although the computational cost is necessarily increased due to the iterations. The ten-layer case is less precise, but still provides results to within an acceptable range. This new approach allows for the calculation of radiation transfer in vertically resolved vegetation canopies simulated in global circulation models.


2020 ◽  
Author(s):  
Christiaan T. van Dalum ◽  
Willem Jan van de Berg ◽  
Michiel R. van den Broeke

Abstract. This study evaluates the impact of a new snow and ice albedo and radiative transfer scheme on the surface mass and energy budget for the Greenland ice sheet in the latest version of the regional climate model RACMO2, version 2.3p3. We also evaluate the modeled (sub)surface temperature and snow melt, as subsurface heating by radiation penetration now occurs. The results are compared to the previous model version and are evaluated against stake measurements and automatic weather station data of the K-transect and PROMICE projects. In addition, subsurface snow temperature profiles are compared at the K-transect, Summit and southeast Greenland. The surface mass balance is in good agreement with observations, and only changes considerably with respect to the previous RACMO2 version around the ice margins and in the percolation zone. Snow melt and refreezing, on the other hand, are changed more substantially in various regions due to the changed albedo representation, subsurface energy absorption and melt water percolation. Internal heating leads to considerably higher snow temperatures in summer, in agreement with observations, and introduces a shallow layer of subsurface melt.


2013 ◽  
Vol 118 (2) ◽  
pp. 888-903 ◽  
Author(s):  
Dominique Carrer ◽  
Jean-Louis Roujean ◽  
Sébastien Lafont ◽  
Jean-Christophe Calvet ◽  
Aaron Boone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document