expanding shells
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 2)

2020 ◽  
Vol 495 (4) ◽  
pp. 4347-4365 ◽  
Author(s):  
Fabio Bresolin ◽  
Luca Rizzi ◽  
I-Ting Ho ◽  
Roberto Terlevich ◽  
Elena Terlevich ◽  
...  

ABSTRACT We study the kinematics of the giant H ii regions NGC 5455 and NGC 5471 located in the galaxy M101, using integral field observations that include the H β and [O iii]$\, \lambda$ 5007 emission lines, obtained with the Keck Cosmic Web Imager. We analyse the line profiles using both single and multiple Gaussian curves, gathering evidence for the presence of several expanding shells and moving filaments. The line decomposition shows that a broad (σ ≃ 30–50 km s−1) underlying component is ubiquitous, extending across hundreds of pc, while a large fraction of the narrow components have subsonic line widths. The supersonic turbulence inferred from the global line profiles is consistent with the velocity dispersion of the individual narrow components, i.e. the global profiles likely arise from the combined contribution of discrete gas clouds. We confirm the presence of very extended (400–1200 km s−1) low-intensity line components in three bright star-forming cores in NGC 5471, possibly representing kinematic signatures of supernova remnants. For one of these, the known supernova remnant host NGC 5471 B, we find a significantly reduced [O iii]/H β line ratio relative to the surrounding photoionized gas, due to the presence of a radiative shock at low metallicity. We explore the systematic width discrepancy between H i and [O iii] lines, present in both global and individual spaxel spectra. We argue that the resolution of this long-standing problem lies in the physics of the line-emitting gas rather than in the smearing effects induced by the different thermal widths.


2020 ◽  
Vol 891 (1) ◽  
pp. 46 ◽  
Author(s):  
C. R. O’Dell ◽  
N. P. Abel ◽  
G. J. Ferland

2019 ◽  
Vol 631 ◽  
pp. A18 ◽  
Author(s):  
F. Arrigoni Battaia ◽  
A. Obreja ◽  
J. X. Prochaska ◽  
J. F. Hennawi ◽  
H. Rahmani ◽  
...  

We used the Multi-Unit Spectroscopic Explore (MUSE) on the Very Large Telescope (VLT) to conduct a survey of z ∼ 3 physical quasar pairs at close separation (<30″) with a fast observation strategy (45 min on source). Our aim is twofold: (i) to explore the Lyα glow around the faint-end of the quasar population; and (ii) to take advantage of the combined illumination of a quasar pair to unveil large-scale intergalactic structures (if any) extending between the two quasars. In this work we report the results for the quasar pair SDSS J113502.03−022110.9 – SDSS J113502.50−022120.1 (z  =  3.020, 3.008; i  =  21.84, 22.15), separated by 11.6″ (or 89 projected kpc). MUSE reveals filamentary Lyα structures extending between the two quasars with an average surface brightness of SBLyα  =  1.8 × 10−18 erg s−1 cm−2 arcsec−2. Photoionization models of the constraints in the Lyα, He IIλ1640, and C IVλ1548 line emissions show that the emitting structures are intergalactic bridges with an extent between ∼89 kpc, the quasars’ projected distance, and up to ∼600 kpc. Our models rule out the possibility that the structure extends for ∼2.9 Mpc, that is, the separation inferred from the uncertain systemic redshift difference of the quasars if the difference was only due to the Hubble flow. At the current spatial resolution and surface brightness limit, the average projected width of an individual bridge is ∼35 kpc. We also detect one strong absorption in H I, N V, and C IV along the background sight-line at higher z, which we interpret to be due to at least two components of cool (T ∼ 104 K), metal enriched (Z >  0.3 Z⊙), and relatively ionized circumgalactic or intergalactic gas surrounding the quasar pair. Two additional H I absorbers are detected along both quasar sight-lines at ∼−900 and −2800 km s−1 from the system; the latter has associated C IV absorption only along the foreground quasar sight-line. The absence of galaxies in the MUSE field of view at the redshifts of these two absorbers suggests that they trace large-scale structures or expanding shells in front of the quasar pair. Combining longer exposures and higher spectral resolution when targeting similar quasar pairs has the potential to firmly constrain the physical properties of gas in large-scale intergalactic structures.


2019 ◽  
Vol 628 ◽  
pp. A90 ◽  
Author(s):  
H. Beuther ◽  
A. Walsh ◽  
Y. Wang ◽  
M. Rugel ◽  
J. Soler ◽  
...  

Context. OH masers trace diverse physical processes, from the expanding envelopes around evolved stars to star-forming regions or supernovae remnants. Providing a survey of the ground-state OH maser transitions in the northern hemisphere inner Milky Way facilitates the study of a broad range of scientific topics. Aims. We want to identify the ground-state OH masers at ∼18 cm wavelength in the area covered by The HI/OH/Recombination line survey of the Milky Way (THOR). We will present a catalogue of all OH maser features and their possible associated environments. Methods. The THOR survey covers longitude and latitude ranges of 14.°3 < l < 66.°8 and b < ± 1.°25. All OH ground state lines 2Π3/2 (J = 3/2) at 1612 (F = 1−2), 1665 (F = 1−1), 1667 (F = 2−2) and 1720 MHz (F = 2−1) have been observed, employing the Very Large Array (VLA) in its C configuration. The spatial resolution of the data varies between 12.5″ and 19″, the spectral resolution is 1.5 km s−1, and the rms sensitivity of the data is ∼10 mJy beam−1 per channel. Results. We identify 1585 individual maser spots (corresponding to single spectral features) distributed over 807 maser sites (regions of size ∼103 − 104 AU). Based on different criteria from spectral profiles to literature comparison, we try to associate the maser sites with astrophysical source types. Approximately 51% of the sites exhibit the double-horned 1612 MHz spectra typically emitted from the expanding shells of evolved stars. The separations of the two main velocity features of the expanding shells typically vary between 22 and 38 km s−1. In addition to this, at least 20% of the maser sites are associated with star-forming regions. While the largest fraction of 1720 MHz maser spots (21 out of 53) is associated with supernova remnants, a significant fraction of the 1720 MHz maser spots (17) are also associated with star-forming regions. We present comparisons to the thermal 13CO(1–0) emission as well as to other surveys of class II CH3OH and H2O maser emission. The catalogue attempts to present associations to astrophysical sources where available, and the full catalogue is available in electronic form. Conclusions. This OH maser catalogue presents a unique resource of stellar and interstellar masers in the northern hemisphere. It provides the basis for a diverse range of follow-up studies from envelopes around evolved stars to star-forming regions and Supernova remnants.


2018 ◽  
Vol 71 (Supplement_1) ◽  
Author(s):  
Tomomi Shimoikura ◽  
Kazuhito Dobashi ◽  
Fumitaka Nakamura ◽  
Yoshito Shimajiri ◽  
Koji Sugitani

Abstract We present the results of mapping observations covering a large area of 1 square degree around W 40 and Serpens South carried out in the 12CO (J = 1–0), 13CO (J = 1–0), C18O (J = 1–0), CCS (JN = 87–76), and N2H+ (J = 1–0) emission lines with the 45 m Nobeyama Radio Telescope. W 40 is a blistered H ii region, and Serpens South is an infrared dark cloud accompanied by a young cluster. The relation between these two regions, which are separated by ∼20′ on the sky, has not been recognizable so far. We found the C18O emission is distributed smoothly throughout the W 40 and Serpens South regions, and that the two regions seem to be physically connected. We divided the C18O emission into four groups in terms of the spatial distributions around the H ii region which we call 5, 6, 7, and 8 km s−1 components according to their typical LSR velocity, and propose a three-dimensional model of the W 40 and Serpens South complex. We found two elliptical structures in the position–velocity diagrams, which can be explained as part of two expanding shells. One of the shells is small inner shell just around the H ii region, and the other is a large outer shell corresponding to the boundary of the H ii region. Dense gas associated with the young cluster of Serpens South is likely to be located at the surface of the outer shell, indicating that the natal clump of the young cluster is interacting with the outer shell being compressed by the expansion of the shell. We suggest that the expansion of the shell induced the formation of the young cluster.


Author(s):  
John Beckman ◽  
Artemi Camps Fariña ◽  
Javier Zaragoza Cardiel ◽  
Joan Font

AbstractWe present a new method (BUBBLY) for detecting expanding components of ionized gas using integral field spectroscopy, showing its capabilities not only in detecting but also in obtaining the key physical parameters of the expanding shells: their expansion velocities and masses. The main advantages are that the detection is performed automatically via software and that we can derive most parameters of the shells, so it is suitable for detailed studies of feedback in nearby galaxies. The software can easily be configured to run on any data cube mapping an emission line over a spatial field. We also present results obtained by running BUBBLY on observations of Hα emission with the Fabry-Perot spectrograph GHαFaS: two sets of spectacular results at widely different spatial scales: the Antennae galaxies show multiple giant bubbles of size ~300pc around the brightest clusters, while inside a region in M33 we find three nested supernova remnants, with which we can study the feedback on the molecular gas surrounding the cluster.


Author(s):  
J. R. Dawson

AbstractThe accumulation, compression, and cooling of the ambient interstellar medium (ISM) in large-scale flows powered by OB cluster feedback can drive the production of dense molecular clouds. We review the current state of the field, with a strong focus on the explicit modelling and observation of the neutral ISM. Magnetohydrodynamic simulations of colliding ISM flows provide a strong theoretical framework in which to view feedback-driven cloud formation, as do models of the gravitational fragmentation of expanding shells. Rapid theoretical developments are accompanied by a growing body of observational work that provides good evidence for the formation of molecular gas via stellar feedback—both in the Milky Way and the Large Magellanic Cloud. The importance of stellar feedback compared with other major astrophysical drivers of dense gas formation remains to be investigated further, and will be an important target for future work.


2012 ◽  
Vol 8 (S292) ◽  
pp. 48-48
Author(s):  
Tie Liu ◽  
Yuefang Wu ◽  
Huawei Zhang

AbstractThe environments surrounding nine Wolf-Rayet stars were studied in molecular emission. Expanding shells were detected surrounding these WR stars (see left panels of Figure 1). The average masses and radii of the molecular cores surrounding these WR stars anti-correlate with the WR stellar wind velocities (middle panels of Figure 1), indicating the WR stars has great impact on their environments. The number density of Young Stellar Objects (YSOs) is enhanced in the molecular shells at ∼5 arcmin from the central WR star (lower-right panel of Figure 1). Through detailed studies of the molecular shells and YSOs, we find strong evidences of triggered star formation in the fragmented molecular shells (Liu et al. 2010).


2011 ◽  
Vol 7 (S283) ◽  
pp. 400-401
Author(s):  
Ralf Jacob ◽  
Detlef Schönberner ◽  
Holger Lehmann ◽  
Alena Zwanzig ◽  
Christer Sandin ◽  
...  

AbstractOur sample of round/elliptical double-shell PNe around central stars (CSs) with H-rich surface chemistry covers all evolutionary phases across the HRD. By means of high-resolution and high-S/N spectra we determine bulk matter velocities of the inner wind-driven rims and the maximum (= post-shock) gas velocities of the surrounding thermally expanding shells. Studying the details of the internal kinematics allows a look at processes of PN formation and at PN expansion history helping, for instance, to determine expansion distances.


2011 ◽  
Vol 733 (1) ◽  
pp. 17 ◽  
Author(s):  
Kazunari Iwasaki ◽  
Shu-ichiro Inutsuka ◽  
Toru Tsuribe

Sign in / Sign up

Export Citation Format

Share Document