Review of "Isoprene derived secondary organic aerosol in a global aerosol chemistry climate model"

2018 ◽  
Author(s):  
Anonymous
2017 ◽  
Author(s):  
Scarlet Stadtler ◽  
Thomas Kühn ◽  
Sabine Schröder ◽  
Domenico Taraborrelli ◽  
Martin G. Schultz ◽  
...  

2015 ◽  
Vol 15 (4) ◽  
pp. 4117-4143 ◽  
Author(s):  
K. M. Badali ◽  
S. Zhou ◽  
D. Aljawhary ◽  
M. Antiñolo ◽  
W. J. Chen ◽  
...  

Abstract. This paper demonstrates that OH radicals are formed by photolysis of secondary organic aerosol (SOA) material formed by terpene ozonolysis. The SOA aerosol is collected on filters, dissolved in water containing a radical trap (benzoic acid), and then exposed to ultraviolet light in a photochemical reactor. The OH formation rates, which are similar for both α-pinene and limonene SOA, are measured from the formation rate of p-hydroxybenzoic acid as measured using offline HPLC analysis. To evaluate whether the OH is formed by photolysis of H2O2 or organic hydroperoxides (ROOH), the peroxide content of the SOA was measured using the horseradish peroxidase-dichlorofluorescein (HRP-DCF) assay, which was calibrated using H2O2. The OH formation rates from SOA are five times faster than from the photolysis of H2O2 solutions whose concentrations correspond to the peroxide content of the SOA solutions assuming that the HRP-DCF signal arises from H2O2 alone. The higher rates of OH formation from SOA are likely due to ROOH photolysis. This result is substantiated by photolysis experiments conducted with t-butyl hydroperoxide and cumene hydroperoxide which produce over three times more OH than photolysis of equivalent concentrations of H2O2. Relative to the peroxide level in the SOA, the quantum yield for OH generation from α-pinene SOA is 0.8 ± 0.4. This is the first demonstration of an efficient photolytic source of OH in SOA, one that may affect both cloudwater and aerosol chemistry.


2015 ◽  
Vol 15 (14) ◽  
pp. 7831-7840 ◽  
Author(s):  
K. M. Badali ◽  
S. Zhou ◽  
D. Aljawhary ◽  
M. Antiñolo ◽  
W. J. Chen ◽  
...  

Abstract. This paper demonstrates that OH radicals are formed by photolysis of secondary organic aerosol (SOA) material formed by terpene ozonolysis. The SOA is collected on filters, dissolved in water containing a radical trap (benzoic acid), and then exposed to ultraviolet light in a photochemical reactor. The OH formation rates, which are similar for both α-pinene and limonene SOA, are measured from the formation rate of p-hydroxybenzoic acid as measured using offline HPLC analysis. To evaluate whether the OH is formed by photolysis of H2O2 or organic hydroperoxides (ROOH), the peroxide content of the SOA was measured using the horseradish peroxidase-dichlorofluorescein (HRP-DCF) assay, which was calibrated using H2O2. The OH formation rates from SOA are 5 times faster than from the photolysis of H2O2 solutions whose concentrations correspond to the peroxide content of the SOA solutions, assuming that the HRP-DCF signal arises from H2O2 alone. The higher rates of OH formation from SOA are likely due to ROOH photolysis, but we cannot rule out a contribution from secondary processes as well. This result is substantiated by photolysis experiments conducted with t-butyl hydroperoxide and cumene hydroperoxide which produce over 3 times more OH than photolysis of equivalent concentrations of H2O2. Relative to the peroxide level in the SOA and assuming that the peroxides drive most of the ultraviolet absorption, the quantum yield for OH generation from α-pinene SOA is 0.8 ± 0.4. This is the first demonstration of an efficient photolytic source of OH in SOA, one that may affect both cloud water and aerosol chemistry.


2018 ◽  
Vol 11 (8) ◽  
pp. 3235-3260 ◽  
Author(s):  
Scarlet Stadtler ◽  
Thomas Kühn ◽  
Sabine Schröder ◽  
Domenico Taraborrelli ◽  
Martin G. Schultz ◽  
...  

Abstract. Within the framework of the global chemistry climate model ECHAM–HAMMOZ, a novel explicit coupling between the sectional aerosol model HAM-SALSA and the chemistry model MOZ was established to form isoprene-derived secondary organic aerosol (iSOA). Isoprene oxidation in the chemistry model MOZ is described by a semi-explicit scheme consisting of 147 reactions embedded in a detailed atmospheric chemical mechanism with a total of 779 reactions. Semi-volatile and low-volatile compounds produced during isoprene photooxidation are identified and explicitly partitioned by HAM-SALSA. A group contribution method was used to estimate their evaporation enthalpies and corresponding saturation vapor pressures, which are used by HAM-SALSA to calculate the saturation concentration of each iSOA precursor. With this method, every single precursor is tracked in terms of condensation and evaporation in each aerosol size bin. This approach led to the identification of dihydroxy dihydroperoxide (ISOP(OOH)2) as a main contributor to iSOA formation. Further, the reactive uptake of isoprene epoxydiols (IEPOXs) and isoprene-derived glyoxal were included as iSOA sources. The parameterization of IEPOX reactive uptake includes a dependency on aerosol pH value. This model framework connecting semi-explicit isoprene oxidation with explicit treatment of aerosol tracers leads to a global annual average isoprene SOA yield of 15 % relative to the primary oxidation of isoprene by OH, NO3 and ozone. With 445.1 Tg (392.1 Tg C) isoprene emitted, an iSOA source of 138.5 Tg (56.7 Tg C) is simulated. The major part of iSOA in ECHAM–HAMMOZ is produced by IEPOX at 42.4 Tg (21.0 Tg C) and ISOP(OOH)2 at 78.0 Tg (27.9 Tg C). The main sink process is particle wet deposition, which removes 133.6 (54.7 Tg C). The average iSOA burden reaches 1.4 Tg (0.6 Tg C) in the year 2012.


Tellus B ◽  
2015 ◽  
Vol 67 (1) ◽  
pp. 24634 ◽  
Author(s):  
Changqin Yin ◽  
Tijian Wang ◽  
Fabien Solmon ◽  
Marc Mallet ◽  
Fei Jiang ◽  
...  

2019 ◽  
Vol 53 (9) ◽  
pp. 4977-4987 ◽  
Author(s):  
Jonathan H. Slade ◽  
Andrew P. Ault ◽  
Alexander T. Bui ◽  
Jenna C. Ditto ◽  
Ziying Lei ◽  
...  

2017 ◽  
Author(s):  
Scarlet Stadtler ◽  
Thomas Kühn ◽  
Sabine Schröder ◽  
Domenico Taraborrelli ◽  
Martin G. Schultz ◽  
...  

Abstract. Within the framework of the global chemistry climate model ECHAM-HAMMOZ a novel explicit coupling between the sectional aerosol model HAM-SALSA and the chemistry model MOZ was established to form isoprene derived secondary organic aerosol (iSOA). Isoprene oxidation in the chemistry model MOZ is described by a semi-explicit scheme consisting of 147 reactions, embedded in a detailed atmospheric chemical mechanism with a total of 779 reactions. Low volatile compounds (LVOC) produced during isoprene photooxidation are identified and explicitly partitioned by HAM-SALSA. A group contribution method was used to estimate their evaporation enthalpies and corresponding saturation vapor pressures, which are used by HAM-SALSA to calculate the saturation concentration of each LVOC. With this method, every single precursor is tracked in terms of condensation and evaporation in each aerosol size bin. This approach lead to the identification of ISOP(OOH)2 as a main contributor to iSOA formation. Further, reactive uptake of isoprene epoxidiols (IEPOX) and isoprene derived glyoxal were included as iSOA sources. The parameterization of IEPOX reactive uptake includes a dependency on aerosol pH value. This model framework connecting semi-explicit isoprene oxidation with explicit treatment of aerosol tracers leads to a global, annual isoprene SOA yield of 16 % relative to the primary oxidation of isoprene by OH, NO3, and ozone. With 445 Tg (392 TgC) isoprene emitted, an iSOA source of 148 Tg (61 TgC) is simulated. The major part of iSOA in ECHAM-HAMMOZ is produced by IEPOX (24.4 TgC) and ISOP(OOH)2 (28.3 TgC). The main sink process is particle wet deposition which removes 143 Tg (59 TgC). The iSOA burden reaches 1.6 Tg (0.7 TgC) in the year 2012.


2019 ◽  
Author(s):  
Christopher Y. Lim ◽  
David H. Hagan ◽  
Matthew M. Coggon ◽  
Abigail R. Koss ◽  
Kanako Sekimoto ◽  
...  

Abstract. Biomass burning is an important source of aerosol and trace gases to the atmosphere, but how these emissions change chemically during their lifetimes is not fully understood. As part of the Fire Influence on Regional and Global Environments Experiment (FIREX 2016), we investigated the effect of photochemical aging on biomass burning organic aerosol (BBOA), with a focus on fuels from the western United States. Emissions were sampled into a small (150 L) environmental chamber and photochemically aged via the addition of ozone and irradiation by 254 nm light. While some fraction of species undergoes photolysis, the vast majority of aging occurs via reaction with OH radicals, with total OH exposures corresponding to the equivalent of up to 10 days of atmospheric oxidation. For all fuels burned, large and rapid changes are seen in the ensemble chemical composition of BBOA, as measured by an aerosol mass spectrometer (AMS). Secondary organic aerosol (SOA) formation is seen for all aging experiments and continues to grow with increasing OH exposure, but the magnitude of the SOA formation is highly variable between experiments. This variability can be explained well by a combination of experiment-to-experiment differences in OH exposure and the total concentration of non-methane organic gases (NMOGs) in the chamber before oxidation, measured by PTR-ToF-MS (r2 values from 0.64 to 0.83). From this relationship, we calculate the fraction of carbon from biomass burning NMOGs that is converted to SOA as a function of equivalent atmospheric aging time, with carbon yields ranging from 24 ± 4 % after 6 hours to 56 ± 9 % after 4 days.


Author(s):  
Hind A. A. Al-Abadleh

Extensive research has been done on the processes that lead to the formation of secondary organic aerosol (SOA) including atmospheric oxidation of volatile organic compounds (VOCs) from biogenic and anthropogenic...


Sign in / Sign up

Export Citation Format

Share Document