scholarly journals Nine time steps: ultra-fast statistical consistency testing of the Community Earth System Model (pyCECT v3.0)

Author(s):  
Daniel J. Milroy ◽  
Allison H. Baker ◽  
Dorit M. Hammerling ◽  
Elizabeth R. Jessup

Abstract. The Community Earth System Model Ensemble Consistency Test (CESM-ECT) suite was developed as an alternative to requiring bitwise identical output for quality assurance. This objective test provides a statistical measurement of consistency between an accepted ensemble created by small initial temperature perturbations and a test set of CESM simulations. In this work, we extend the CESM-ECT suite by the addition of an inexpensive and robust test for ensemble consistency that is applied to Community Atmospheric Model (CAM) output after only nine model time steps. We demonstrate that adequate ensemble variability is achieved with instantaneous variable values at the ninth step, despite rapid perturbation growth and heterogeneous variable spread. We refer to this new test as the Ultra-Fast CAM Ensemble Consistency Test (UF-CAM-ECT) and demonstrate its effectiveness in practice, including its ability to detect small-scale events and its applicability to the Community Land Model (CLM). The new ultra-fast test facilitates CESM development, porting, and optimization efforts, particularly when used to complement information from the original CESM-ECT suite of tools.

2018 ◽  
Vol 11 (2) ◽  
pp. 697-711 ◽  
Author(s):  
Daniel J. Milroy ◽  
Allison H. Baker ◽  
Dorit M. Hammerling ◽  
Elizabeth R. Jessup

Abstract. The Community Earth System Model Ensemble Consistency Test (CESM-ECT) suite was developed as an alternative to requiring bitwise identical output for quality assurance. This objective test provides a statistical measurement of consistency between an accepted ensemble created by small initial temperature perturbations and a test set of CESM simulations. In this work, we extend the CESM-ECT suite with an inexpensive and robust test for ensemble consistency that is applied to Community Atmospheric Model (CAM) output after only nine model time steps. We demonstrate that adequate ensemble variability is achieved with instantaneous variable values at the ninth step, despite rapid perturbation growth and heterogeneous variable spread. We refer to this new test as the Ultra-Fast CAM Ensemble Consistency Test (UF-CAM-ECT) and demonstrate its effectiveness in practice, including its ability to detect small-scale events and its applicability to the Community Land Model (CLM). The new ultra-fast test facilitates CESM development, porting, and optimization efforts, particularly when used to complement information from the original CESM-ECT suite of tools.


2016 ◽  
Author(s):  
S. Tilmes ◽  
J.-F. Lamarque ◽  
L. K. Emmons ◽  
D. E. Kinnison ◽  
D. Marsh ◽  
...  

Abstract. The Community Earth System Model, CESM1 CAM4-chem has been used to perform the Chemistry Climate Model Initiative (CCMI) reference and sensitivity simulations. In this model, the Community Atmospheric Model Version 4 (CAM4) is fully coupled to tropospheric and stratospheric chemistry. Details and specifics of each configuration, including new developments and improvements are described. CESM1 CAM4-chem is a low top model that reaches up to approximately 40 km and uses a horizontal resolution of 1.9° latitude and 2.5° longitude. For the specified dynamics experiments, the model is nudged to Modern-Era Retrospective Analysis For Research And Applications (MERRA) reanalysis. We summarize the performance of the three reference simulations suggested by CCMI, with a focus on the observed period. Comparisons with elected datasets are employed to demonstrate the general performance of the model. We highlight new datasets that are suited for multi-model evaluation studies. Most important improvements of the model are the treatment of stratospheric aerosols and the corresponding adjustments for radiation and optics, the updated chemistry scheme including improved polar chemistry and stratospheric dynamics, and improved dry deposition rates. These updates lead to a very good representation of tropospheric ozone within 20 % of values from available observations for most regions. In particular, the trend and magnitude of surface ozone has been much improved compared to earlier versions of the model. Furthermore, stratospheric column ozone of the Southern Hemisphere in winter and spring is reasonably well represented. All experiments still underestimate CO most significantly in Northern Hemisphere spring and show a significant underestimation of hydrocarbons based on surface observations.


2021 ◽  
Vol 14 (1) ◽  
pp. 603-628
Author(s):  
Shiming Xu ◽  
Jialiang Ma ◽  
Lu Zhou ◽  
Yan Zhang ◽  
Jiping Liu ◽  
...  

Abstract. High-resolution sea ice modeling is becoming widely available for both operational forecasts and climate studies. In traditional Eulerian grid-based models, small-scale sea ice kinematics represent the most prominent feature of high-resolution simulations, and with rheology models such as viscous–plastic (VP) and Maxwell elasto-brittle (MEB), sea ice models are able to reproduce multi-fractal sea ice deformation and linear kinematic features that are seen in high-resolution observational datasets. In this study, we carry out modeling of sea ice with multiple grid resolutions by using the Community Earth System Model (CESM) and a grid hierarchy (22, 7.3, and 2.4 km grid stepping in the Arctic). By using atmospherically forced experiments, we simulate consistent sea ice climatology across the three resolutions. Furthermore, the model reproduces reasonable sea ice kinematics, including multi-fractal spatial scaling of sea ice deformation that partially depends on atmospheric circulation patterns and forcings. By using high-resolution runs as references, we evaluate the model's effective resolution with respect to the statistics of sea ice kinematics. Specifically, we find the spatial scale at which the probability density function (PDF) of the scaled sea ice deformation rate of low-resolution runs matches that of high-resolution runs. This critical scale is treated as the effective resolution of the coarse-resolution grid, which is estimated to be about 6 to 7 times the grid's native resolution. We show that in our model, the convergence of the elastic–viscous–plastic (EVP) rheology scheme plays an important role in reproducing reasonable kinematics statistics and, more strikingly, simulates systematically thinner sea ice than the standard, non-convergent experiments in landfast ice regions of the Canadian Arctic Archipelago. Given the wide adoption of EVP and subcycling settings in current models, it highlights the importance of EVP convergence, especially for climate studies and projections. The new grids and the model integration in CESM are openly provided for public use.


2016 ◽  
Vol 9 (1) ◽  
pp. 125-135 ◽  
Author(s):  
A. J. G. Baumgaertner ◽  
P. Jöckel ◽  
A. Kerkweg ◽  
R. Sander ◽  
H. Tost

Abstract. The Community Earth System Model (CESM1), maintained by the United States National Centre for Atmospheric Research (NCAR) is connected with the Modular Earth Submodel System (MESSy). For the MESSy user community, this offers many new possibilities. The option to use the Community Atmosphere Model (CAM) atmospheric dynamical cores, especially the state-of-the-art spectral element (SE) core, as an alternative to the ECHAM5 spectral transform dynamical core will provide scientific and computational advances for atmospheric chemistry and climate modelling with MESSy. The well-established finite volume core from CESM1(CAM) is also made available. This offers the possibility to compare three different atmospheric dynamical cores within MESSy. Additionally, the CESM1 land, river, sea ice, glaciers and ocean component models can be used in CESM1/MESSy simulations, allowing the use of MESSy as a comprehensive Earth system model (ESM). For CESM1/MESSy set-ups, the MESSy process and diagnostic submodels for atmospheric physics and chemistry are used together with one of the CESM1(CAM) dynamical cores; the generic (infrastructure) submodels support the atmospheric model component. The other CESM1 component models, as well as the coupling between them, use the original CESM1 infrastructure code and libraries; moreover, in future developments these can also be replaced by the MESSy framework. Here, we describe the structure and capabilities of CESM1/MESSy, document the code changes in CESM1 and MESSy, and introduce several simulations as example applications of the system. The Supplements provide further comparisons with the ECHAM5/MESSy atmospheric chemistry (EMAC) model and document the technical aspects of the connection in detail.


2020 ◽  
Author(s):  
Kevin Raeder ◽  
Jeffrey Anderson ◽  
TImothy Hoar ◽  
Nancy Collins ◽  
Moha El Gharamti

<p>The National Center for Atmospheric Research (NCAR) has recently released version 2.1 of the Community Earth System Model (CESM 2.1). A twenty-year, 80-member ensemble atmospheric reanalysis with 1-degree resolution in the CAM6 atmospheric model is being produced using NCAR’s Data Assimilation Research Testbed (DART) to support a variety of climate research goals. A standard configuration of CAM and the CLM5 land surface model will be coupled to a prescribed ocean and sea ice. Eventually, the reanalyisis will generate a final product that extends from 1999 to the present. Observations being assimilated include in situ observations used in the operational NCEP CFSR reanalysis along with GPS occultation observations and remote sensing temperature retrievals. The primary goal is to provide an ensemble of atmospheric forcing that can be used to generate additional ensemble reanalyses for other components of CESM including CLM, the POP and MOM6 ocean models, and the CICE sea ice model. Highlights of results from the first 10-years of the reanalysis will be presented. Results will include evaluation of short-term forecasts in observation space for root mean square error, ensemble spread, and ensemble consistency. In addition, key aspects of the atmospheric forcing files for other components of the climate system will be discussed. </p>


2015 ◽  
Vol 8 (9) ◽  
pp. 2829-2840 ◽  
Author(s):  
A. H. Baker ◽  
D. M. Hammerling ◽  
M. N. Levy ◽  
H. Xu ◽  
J. M. Dennis ◽  
...  

Abstract. Climate simulation codes, such as the Community Earth System Model (CESM), are especially complex and continually evolving. Their ongoing state of development requires frequent software verification in the form of quality assurance to both preserve the quality of the code and instill model confidence. To formalize and simplify this previously subjective and computationally expensive aspect of the verification process, we have developed a new tool for evaluating climate consistency. Because an ensemble of simulations allows us to gauge the natural variability of the model's climate, our new tool uses an ensemble approach for consistency testing. In particular, an ensemble of CESM climate runs is created, from which we obtain a statistical distribution that can be used to determine whether a new climate run is statistically distinguishable from the original ensemble. The CESM ensemble consistency test, referred to as CESM-ECT, is objective in nature and accessible to CESM developers and users. The tool has proven its utility in detecting errors in software and hardware environments and providing rapid feedback to model developers.


2016 ◽  
Vol 9 (7) ◽  
pp. 2391-2406 ◽  
Author(s):  
Allison H. Baker ◽  
Yong Hu ◽  
Dorit M. Hammerling ◽  
Yu-heng Tseng ◽  
Haiying Xu ◽  
...  

Abstract. The Parallel Ocean Program (POP), the ocean model component of the Community Earth System Model (CESM), is widely used in climate research. Most current work in CESM-POP focuses on improving the model's efficiency or accuracy, such as improving numerical methods, advancing parameterization, porting to new architectures, or increasing parallelism. Since ocean dynamics are chaotic in nature, achieving bit-for-bit (BFB) identical results in ocean solutions cannot be guaranteed for even tiny code modifications, and determining whether modifications are admissible (i.e., statistically consistent with the original results) is non-trivial. In recent work, an ensemble-based statistical approach was shown to work well for software verification (i.e., quality assurance) on atmospheric model data. The general idea of the ensemble-based statistical consistency testing is to use a qualitative measurement of the variability of the ensemble of simulations as a metric with which to compare future simulations and make a determination of statistical distinguishability. The capability to determine consistency without BFB results boosts model confidence and provides the flexibility needed, for example, for more aggressive code optimizations and the use of heterogeneous execution environments. Since ocean and atmosphere models have differing characteristics in term of dynamics, spatial variability, and timescales, we present a new statistical method to evaluate ocean model simulation data that requires the evaluation of ensemble means and deviations in a spatial manner. In particular, the statistical distribution from an ensemble of CESM-POP simulations is used to determine the standard score of any new model solution at each grid point. Then the percentage of points that have scores greater than a specified threshold indicates whether the new model simulation is statistically distinguishable from the ensemble simulations. Both ensemble size and composition are important. Our experiments indicate that the new POP ensemble consistency test (POP-ECT) tool is capable of distinguishing cases that should be statistically consistent with the ensemble and those that should not, as well as providing a simple, subjective and systematic way to detect errors in CESM-POP due to the hardware or software stack, positively contributing to quality assurance for the CESM-POP code.


Sign in / Sign up

Export Citation Format

Share Document