scholarly journals DINCAE 2: multivariate convolutional neural network with error estimates to reconstruct sea surface temperature satellite and altimetry observations

2021 ◽  
Author(s):  
Alexander Barth ◽  
Aida Alvera-Azcárate ◽  
Charles Troupin ◽  
Jean-Marie Beckers

Abstract. DINCAE (Data INterpolating Convolutional Auto-Encoder) is a neural network to reconstruct missing data (e.g. obscured by clouds or gaps between tracks) in satellite data. Contrary to standard image reconstruction (in-painting) with neural networks, this application requires a method to handle missing data (or data with variable accuracy) already in the training phase. Instead of using a standard L2 (or L1) cost function, the neural network (U-Net type of network) is optimized by minimizing the negative log likelihood assuming a Gaussian distribution (characterized by a mean and a variance). As a consequence, the neural network also provides an expected error variance of the reconstructed field (per pixel and per time instance). In this updated version DINCAE 2.0, the code was rewritten in Julia and a new type of skip connection has been implemented which showed superior performance with respect to the previous version. The method has also been extended to handle multivariate data (an example will be shown with sea-surface temperature, chlorophyll concentration and wind fields). The improvement of this network is demonstrated in the Adriatic Sea. Convolutional networks work usually with gridded data as input. This is however a limitation for some data types used in oceanography and in Earth Sciences in general, where observations are often irregularly sampled. The first layer of the neural network and the cost function have been modified so that unstructured data can also be used as inputs to obtain gridded fields as output. To demonstrate this, the neural network is applied to along-track altimetry data in the Mediterranean Sea. Results from a 20-year reconstruction are presented and validated. Hyperparameters are determined using Bayesian optimization and minimizing the error relative to a development dataset.

2020 ◽  
Vol 13 (3) ◽  
pp. 1609-1622 ◽  
Author(s):  
Alexander Barth ◽  
Aida Alvera-Azcárate ◽  
Matjaz Licer ◽  
Jean-Marie Beckers

Abstract. A method to reconstruct missing data in sea surface temperature data using a neural network is presented. Satellite observations working in the optical and infrared bands are affected by clouds, which obscure part of the ocean underneath. In this paper, a neural network with the structure of a convolutional auto-encoder is developed to reconstruct the missing data based on the available cloud-free pixels in satellite images. Contrary to standard image reconstruction with neural networks, this application requires a method to handle missing data (or data with variable accuracy) in the training phase. The present work shows a consistent approach which uses the satellite data and its expected error variance as input and provides the reconstructed field along with its expected error variance as output. The neural network is trained by maximizing the likelihood of the observed value. The approach, called DINCAE (Data INterpolating Convolutional Auto-Encoder), is applied to a 25-year time series of Advanced Very High Resolution Radiometer (AVHRR) sea surface temperature data and compared to DINEOF (Data INterpolating Empirical Orthogonal Functions), a commonly used method to reconstruct missing data based on an EOF (empirical orthogonal function) decomposition. The reconstruction error of both approaches is computed using cross-validation and in situ observations from the World Ocean Database. DINCAE results have lower error while showing higher variability than the DINEOF reconstruction.


2020 ◽  
Author(s):  
Alexander Barth ◽  
Aida Alvera Azcárate ◽  
Matjaz Licer ◽  
Jean-Marie Beckers

<p>A method to reconstruct missing data in satellite data using a neural network is presented. Satellite observations working in the optical and infrared bands are affected by clouds, which obscure part of the ocean underneath. In this paper, a neural network with the structure of a convolutional auto-encoder is developed to reconstruct the missing data based on the available cloud-free pixels in satellite images. However, it is unclear how to handle missing data (or data with variable accuracy) in a neural network when using incomplete satellite data in the training phase. The present work shows a consistent approach which uses essentially the satellite data and its expected error variance as input and provides the reconstructed field along with its expected error variance as output. The approach is motivated by the way models and observations are combined in the frame of data assimilation. The neural network is trained by maximizing the likelihood of the observed value. The corresponding error variances are estimated during training and do not need to be known a priori. The approach, called DINCAE (Data-Interpolating Convolutional Auto-Encoder) is applied to a relatively long time-series of Advanced Very High Resolution Radiometer (AVHRR) sea surface temperature data and compared to DINEOF (Data Interpolating Empirical Orthogonal Functions), a method to reconstruct missing data based on an EOF decomposition. The reconstruction error of both approaches is computed using cross-validation and in situ observations from the World Ocean Database. DINCAE results have lower error, while showing higher variability than the DINEOF reconstruction. The resulting error estimates are also validated using the cross-validation data and they follow closely the expected Gaussian distribution.</p>


2019 ◽  
Author(s):  
Alexander Barth ◽  
Aida Alvera-Azcárate ◽  
Matjaz Licer ◽  
Jean-Marie Beckers

Abstract. A method to reconstruct missing data in satellite data using a neural network is presented. Satellite observations working in the optical and infrared bands are affected by clouds, which obscure part of the ocean underneath. In this paper, a neural network with the structure of a convolutional auto-encoder is developed to reconstruct the missing data based on the available cloud-free pixels in satellite images. However, it is unclear how to handle missing data (or data with variable accuracy) in a neural network when using incomplete satellite data in the training phase. The present work shows a consistent approach which uses essentially the satellite data and its expected error variance as input and provides the reconstructed field along with its expected error variance as output. The neural network is trained by maximizing likelihood of the observed value. The approach, called DINCAE (Data-Interpolating Convolutional Auto-Encoder) is applied to a relatively long time-series of Advanced Very High Resolution Radiometer (AVHRR) sea surface temperature data and compared to DINEOF (Data Interpolating Empirical Orthogonal Functions), a method to reconstruct missing data based on an EOF decomposition. The reconstruction error of both approaches is computed using cross-validation and in situ observations from the World Ocean Database. DINCAE results have lower error, while showing higher variability than the DINEOF reconstruction.


2020 ◽  
Vol 8 (4) ◽  
pp. 249 ◽  
Author(s):  
Zhen Zhang ◽  
Xinliang Pan ◽  
Tao Jiang ◽  
Baikai Sui ◽  
Chenxi Liu ◽  
...  

The sea surface temperature (SST) is an important parameter of the energy balance on the Earth’s surface. SST prediction is crucial to marine production, marine protection, and climate prediction. However, the current SST prediction model still has low precision and poor stability. In this study, a medium and long-term SST prediction model is designed on the basis of the gated recurrent unit (GRU) neural network algorithm. This model captures the SST time regularity by using the GRU layer and outputs the predicted results through the fully connected layer. The Bohai Sea, which is characterized by a large annual temperature difference, is selected as the study area, and the SSTs on different time scales (monthly and quarterly) are used to verify the practicability and stability of the model. The results show that the designed SST prediction model can efficiently fit the results of the real sea surface temperature, and the correlation coefficient is above 0.98. Regardless of whether monthly or quarterly data are used, the proposed network model performs better than long short-term memory in terms of stability and accuracy when the length of the prediction increases. The root mean square error and mean absolute error of the predicted SST are mostly within 0–2.5 °C.


2020 ◽  
Vol 11 (7) ◽  
pp. 611-619
Author(s):  
Lingyu Xu ◽  
Yifan Li ◽  
Jie Yu ◽  
Qin Li ◽  
Suixiang Shi

Sign in / Sign up

Export Citation Format

Share Document