scholarly journals The CSTools (v4.0) Toolbox: from Climate Forecasts to Climate Forecast Information

2021 ◽  
Author(s):  
Núria Pérez-Zanón ◽  
Louis-Philippe Caron ◽  
Silvia Terzago ◽  
Bert Van Schaeybroeck ◽  
Llorenç Lledó ◽  
...  

Abstract. Despite the wealth of existing climate forecast data, only a small part is effectively exploited for sectoral applications. A major cause of this is the lack of integrated tools that allow the translation of data into useful and skilful climate information. This barrier is addressed through the development of an R package. CSTools is an easy-to-use toolbox designed and built to assess and improve the quality of climate forecasts for seasonal to multi–annual scales. The package contains process-based state-of-the-art methods for forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination and multivariate verification, as well as basic and advanced tools to obtain tailored products. Due to the design of the toolbox in individual functions, the users can develop their own post-processing chain of functions as shown in the use cases presented in this manuscript: the analysis of an extreme wind speed event, the generation of seasonal forecasts of snow depth based on the SNOWPACK model and the post-processing of data to be used as input for the SCHEME hydrological model.

2021 ◽  
Author(s):  
Núria Pérez-Zanón ◽  
Louis-Philippe Caron ◽  
Silvia Terzago ◽  
Bert Van Schaeybroeck ◽  
Lauriane Batté ◽  
...  

<p>Climate forecasts need to be postprocessed to obtain user-relevant climate information, to develop and implement strategies of adaptation to climate variability and to trigger decisions. Several postprocessing methods are gathered into CSTools (short for Climate Service Tools) for forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination and multivariate verification, as well as basic and advanced tools to obtain tailored products. </p><p>Besides an overview of the methods and documentation available in CSTools, a practical example is demonstrated. The objective of this practical example is to postprocess a seasonal forecast with a set of CSTools functions in order to obtain the required data to produce forecasts of mountain snow resources. Quantile mapping bias-correction and RainFARM stochastic downscaling methods are applied to raw seasonal forecast daily precipitation data to derive 1 km resolution fields. Bias-adjusted and downscaled precipitation data are then employed to drive a snow model, SNOWPACK, and generate snow depth seasonal forecasts at selected high-elevation sites in North-Western Italian Alps. </p><p>The computational resources required by CSTools to process the forecasts will be discussed. This assessment is relevant given the memory requirements for the use case: while seasonal forecast data occupies ~10MB (8 x 8 grid cells, 215 forecast time steps for 30 different initializations with 25 members each), the data post-processed reaches ~1TB (the RainFARM downscaling requires a refinement factor 100 for the SNOWPACK model increasing the spatial resolution to 800 x 800 grid cells and creating 10 stochastic realizations for each ensemble member). In addition to one strategy using conventional loops, startR is introduced as an efficient alternative. startR is an R package that allows implementing the MapReduce paradigm, i.e. chunking the data and processing them either locally or remotely on high-performance computing systems, leveraging multi-node and multi-core parallelism where possible.</p>


2020 ◽  
Author(s):  
Nuria Perez-Zanon ◽  
Louis-Philippe Caron ◽  
M. Carmen Alvarez-Castro ◽  
Lauriane Batté ◽  
Susanna Corti ◽  
...  

<p>The availability of climate data has never been larger, as evidenced by the development of the Copernicus Climate Change Service. However, availability of climate data does not automatically translate into usability and sophisticated post-processing is often required to turn these climate data into user-relevant climate information allowing them to develop and implement strategies of adaptation to climate variability and to trigger decisions. </p><p>Developed under the umbrella of the ERA4CS Medscope project by multiple European partners, here we present an R package currently in development, which aims to provide tools to exploit dynamical seasonal forecasts such as to provide information relevant to public and private stakeholders at the seasonal timescale. This toolbox, called CSTools (short for Climate Service Tools), contains process-based methods for forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination and multivariate verification, as well as basic and advanced tools to obtain tailored products. </p><p>In addition to presenting some of the tools that are contained in the package, we also present a short overview of the development strategy adopted for this toolbox. The latter relies on a version controlling system established such as to allow scientists and developers to work within a common framework using a platform where they can exchange with other developers, test the various functionalities and discuss issues arising from the work, amongst other things. Furthermore, we will also present some vignettes, which are one of the mechanisms that allows users to understand and visualize the capabilities of CSTools. For instance, CSTools contains a step by step vignette showing how to use and visualize the output of MultivarRMSE, which gives an indication of the forecast performance (RMSE) for multiple variables simultaneously. </p><p>While the extensive community of R users offers the opportunity of merging climate forecaster experts with final users, CSTools can also be used by other communities, such as Python users through the interface rpy. Finally, the publication of this package on CRAN (the Comprehensive R Archive Network) makes it easily accessible to interested users and ensures its proper functioning on different operational systems. </p>


Author(s):  
Radhika Theagarajan ◽  
Shubham Nimbkar ◽  
Jeyan Arthur Moses ◽  
Chinnaswamy Anandharamakrishnan

2001 ◽  
Vol 1 (4) ◽  
pp. 282-290 ◽  
Author(s):  
F. C. Langbein ◽  
B. I. Mills ◽  
A. D. Marshall ◽  
R. R. Martin

Current reverse engineering systems can generate boundary representation (B-rep) models from 3D range data. Such models suffer from inaccuracies caused by noise in the input data and algorithms. The quality of reverse engineered geometric models can be improved by finding candidate shape regularities in such a model, and constraining the model to meet a suitable subset of them, in a post-processing step called beautification. This paper discusses algorithms to detect such approximate regularities in terms of similarities between feature objects describing properties of faces, edges and vertices, and small groups of these elements in a B-rep model with only planar, spherical, cylindrical, conical and toroidal faces. For each group of similar feature objects they also seek special feature objects which may represent the group, e.g. an integer value which approximates the radius of similar cylinders. Experiments show that the regularities found by the algorithms include the desired regularities as well as spurious regularities, which can be limited by an appropriate choice of tolerances.


2021 ◽  
Author(s):  
Jason Hunter ◽  
Mark Thyer ◽  
Dmitri Kavetski ◽  
David McInerney

<p>Probabilistic predictions provide crucial information regarding the uncertainty of hydrological predictions, which are a key input for risk-based decision-making. However, they are often excluded from hydrological modelling applications because suitable probabilistic error models can be both challenging to construct and interpret, and the quality of results are often reliant on the objective function used to calibrate the hydrological model.</p><p>We present an open-source R-package and an online web application that achieves the following two aims. Firstly, these resources are easy-to-use and accessible, so that users need not have specialised knowledge in probabilistic modelling to apply them. Secondly, the probabilistic error model that we describe provides high-quality probabilistic predictions for a wide range of commonly-used hydrological objective functions, which it is only able to do by including a new innovation that resolves a long-standing issue relating to model assumptions that previously prevented this broad application.  </p><p>We demonstrate our methods by comparing our new probabilistic error model with an existing reference error model in an empirical case study that uses 54 perennial Australian catchments, the hydrological model GR4J, 8 common objective functions and 4 performance metrics (reliability, precision, volumetric bias and errors in the flow duration curve). The existing reference error model introduces additional flow dependencies into the residual error structure when it is used with most of the study objective functions, which in turn leads to poor-quality probabilistic predictions. In contrast, the new probabilistic error model achieves high-quality probabilistic predictions for all objective functions used in this case study.</p><p>The new probabilistic error model and the open-source software and web application aims to facilitate the adoption of probabilistic predictions in the hydrological modelling community, and to improve the quality of predictions and decisions that are made using those predictions. In particular, our methods can be used to achieve high-quality probabilistic predictions from hydrological models that are calibrated with a wide range of common objective functions.</p>


2021 ◽  
Author(s):  
Alice Crespi ◽  
Marcello Petitta ◽  
Lucas Grigis ◽  
Paola Marson ◽  
Jean-Michel Soubeyroux ◽  
...  

<p>Seasonal forecasts provide information on climate conditions several months ahead and therefore they could represent a valuable support for decision making, warning systems as well as for the optimization of industry and energy sectors. However, forecast systems can be affected by systematic biases and have horizontal resolutions which are typically coarser than the spatial scales of the practical applications. For this reason, the reliability of forecasts needs to be carefully assessed before applying and interpreting them for specific applications. In addition, the use of post-processing approaches is recommended in order to improve the representativeness of the large-scale predictions of regional and local climate conditions. The development and evaluation downscaling and bias-correction procedures aiming at improving the skills of the forecasts and the quality of derived climate services is currently an open research field. In this context, we evaluated the skills of ECMWF SEAS5 forecasts of monthly mean temperature, total precipitation and wind speed over Europe and we assessed the skill improvements of calibrated predictions.</p><p>For the calibration, we combined a bilinear interpolation and a quantile mapping approach to obtain corrected monthly forecasts on a 0.25°x0.25° grid from the original 1°x1° values. The forecasts were corrected against the reference ERA5 reanalysis over the hindcast period 1993–2016. The processed forecasts were compared over the same domain and period with another calibrated set of ECMWF SEAS5 forecasts obtained by the ADAMONT statistical method.</p><p>The skill assessment was performed by means of both deterministic and probabilistic verification metrics evaluated over seasonal forecasted aggregations for the first lead time. Greater skills of the forecast systems in Europe were generally observed in spring and summer, especially for temperature, with a spatial distribution varying with the seasons. The calibration was proved to effectively correct the model biases for all variables, however the metrics not accounting for bias did not show significant improvements in most cases, and in some areas and seasons even small degradations in skills were observed.</p><p>The presented study supported the activities of the H2020 European project SECLI-FIRM on the improvement of the seasonal forecast applicability for energy production, management and assessment.</p>


2004 ◽  
Vol 17 (22) ◽  
pp. 4301-4315 ◽  
Author(s):  
Dietmar Dommenget ◽  
Detlef Stammer

Abstract Simulations and seasonal forecasts of tropical Pacific SST and subsurface fields that are based on the global Consortium for Estimating the Circulation and Climate of the Ocean (ECCO) ocean-state estimation procedure are investigated. As compared to similar results from a traditional ENSO simulation and forecast procedure, the hindcast of the constrained ocean state is significantly closer to observed surface and subsurface conditions. The skill of the 12-month lead SST forecast in the equatorial Pacific is comparable in both approaches. The optimization appears to have better skill in the SST anomaly correlations, suggesting that the initial ocean conditions and forcing corrections calculated by the ocean-state estimation do have a positive impact on the predictive skill. However, the optimized forecast skill is currently limited by the low quality of the statistical atmosphere. Progress is expected from optimizing a coupled model over a longer time interval with the coupling statistics being part of the control vector.


2020 ◽  
Author(s):  
Maxim Ivanov ◽  
Albin Sandelin ◽  
Sebastian Marquardt

Abstract Background: The quality of gene annotation determines the interpretation of results obtained in transcriptomic studies. The growing number of genome sequence information calls for experimental and computational pipelines for de novo transcriptome annotation. Ideally, gene and transcript models should be called from a limited set of key experimental data. Results: We developed TranscriptomeReconstructoR, an R package which implements a pipeline for automated transcriptome annotation. It relies on integrating features from independent and complementary datasets: i) full-length RNA-seq for detection of splicing patterns and ii) high-throughput 5' and 3' tag sequencing data for accurate definition of gene borders. The pipeline can also take a nascent RNA-seq dataset to supplement the called gene model with transient transcripts.We reconstructed de novo the transcriptional landscape of wild type Arabidopsis thaliana seedlings as a proof-of-principle. A comparison to the existing transcriptome annotations revealed that our gene model is more accurate and comprehensive than the two most commonly used community gene models, TAIR10 and Araport11. In particular, we identify thousands of transient transcripts missing from the existing annotations. Our new annotation promises to improve the quality of A.thaliana genome research.Conclusions: Our proof-of-concept data suggest a cost-efficient strategy for rapid and accurate annotation of complex eukaryotic transcriptomes. We combine the choice of library preparation methods and sequencing platforms with the dedicated computational pipeline implemented in the TranscriptomeReconstructoR package. The pipeline only requires prior knowledge on the reference genomic DNA sequence, but not the transcriptome. The package seamlessly integrates with Bioconductor packages for downstream analysis.


2016 ◽  
Vol 45 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Sebastian Warnholz ◽  
Timo Schmid

The demand for reliable regional estimates from sample surveys has been substantially grown over the last decades. Small area estimation provides statistical methods to produce reliable predictions when the sample sizes in regions are too small to apply direct estimators. Model- and design-based simulations are used to gain insights into the quality of the introduced methods. In this article we present a framework which may help to guarantee the reproducibility of simulation studies in articles and during research. The introduced R-package saeSim is adjusted to provide a simulation environment for the special case of small area estimation. The package may allow the prospective researcher during the research process to produce simulation studies with a minimal eort of coding.


Sign in / Sign up

Export Citation Format

Share Document