A hybrid post-processing method for improving the surface quality of additively manufactured metal parts

CIRP Annals ◽  
2021 ◽  
Author(s):  
Bing Wang ◽  
Jesse Castellana ◽  
Shreyes N Melkote
2010 ◽  
Vol 113-116 ◽  
pp. 508-511 ◽  
Author(s):  
Wei Liang Zeng ◽  
Yan Ling Guo

According to its advantages, such as low-cost and green biological etc., Wood-Plastic Composite(WPC) is more suitable for make parts by Selective Laser Sintering(SLS) rapid prototyping (RP) process. With optimal design of components, the parts made by WPC have good mechanical properties as well as with good laser sintering properties. In order to further improve the surface quality of the parts, the post-processing–infiltrating with wax–is introduced. After post-processing, the void fraction is decreased from 51% to 7%, surface quality has been greatly improved, Ra belows 13µm on average, after polishing the surface is more smooth and Ra belows 5µm averagely,compared to those without post processing, surface roughness decrease 22% and 73% respectively.


2014 ◽  
Vol 2014 (4) ◽  
pp. 58-61
Author(s):  
Дмитрий Нечаев ◽  
Dmitriy Nechaev ◽  
В. Иноземцев ◽  
V. Inozemtsev ◽  
Михаил Куликов ◽  
...  

The article describes the technology solution provides the desired surface quality of products from aluminum alloys during their machining. Serves processing method, which is a complex effect on the treated surface of the blade of the tool and electroplating processes.


2019 ◽  
Vol 13 (1) ◽  
pp. 316-326 ◽  
Author(s):  
Peter Gehrke ◽  
Jochen Dinkel ◽  
Carsten Fischer ◽  
Kai Schmenger ◽  
Robert Sader

Background: Due to their increased precision, CAD/CAM generated bars (Computer-Aided Design/ Computer-Aided Manufacturing) are increasingly utilized in implant prosthodontics. For optimal clinical results, surface morphology should promote the integration of soft tissue while minimizing plaque and bacterial retention. Objective: Despite their clinical use, only limited information on the biological and clinical surface quality of CAD/CAM milled bars is available. The aim of the study was therefore to characterize the surface topography of bars of different manufacturers based on the profilometric analysis and the need for manual post-processing in the laboratory. Methods: A custom mandibular edentulous cast with four anterior implants was used as a reference cast and reproduced eight times. On each reproduction cast, corresponding scan flags were positioned and digitized. Acrylic 3D printed bar frameworks were produced and sent to the respective production center along with the digital files of the CAD bars for milling. In the course of profilometric analysis, all bars were examined in three critical Regions of Interest (ROI): Transmucosal, labial, basal. Sa and Ra values of each construction were determined. To evaluate the necessary refinishing time eight dental technicians macroscopically evaluated the bars by performing a subjective visual inspection. Kruskal-Wallis H-tests and Tukey and Kramer's post hoc tests were applied to detect differences between the samples. Results: After profilometric examination, three specimens (Dentsply Sirona: ZDC; Straumann: ZST; CAMLOG: ZCC) demonstrated surface roughness values in the biological acceptable range (Sa 0.2-0.4 μm) in the transmucosal region and provided optimal conditions for a reliable soft tissue adaptation. The Ra measurements revealed values beyond the acceptable threshold in the transmucosal region for three bars (Straumann: ZST; Dentsply Sirona: ZDC; Amann Girrbach: LAC). Four bars (LAC: Amann Girrbach; ZBC: BEGO; Datron: LDC & LDT; Zirkonzahn: ZZC) needed undesirable extensive manual rework. The evaluation of quality and time for manual post-processing by dental technicians confirmed the measurement-based ranking of the bars. Conclusion: It is desirable to define a clear roughness threshold for the clinical acceptance of transmucosal CAD/CAM generated surfaces. Clinical studies with profilometric data could help to further improve the surface quality of CAD/CAM milled bars and reduce the need for manual reworking time and effort.


2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Akinori Teramachi ◽  
Jiwang Yan

Metal additive manufacturing (AM) has been attracting attention as a new manufacturing method, but a surface finishing process is usually needed to improve the surface quality. As a new surface finishing process, ultrasonic vibration-assisted burnishing (UVAB) is promising. In this study, UVAB was performed on an additive-manufactured AlSi10 Mg workpiece to improve its surface/subsurface integrity. The effects of ultrasonic vibration (UV) and lateral tool pass width on the burnishing performance were investigated. It was observed that the surface roughness, filling ratio, and hardness of the surface layer were simultaneously improved after burnishing. This study shows the effectiveness of applying UVAB to improve the surface quality of additive-manufactured products for various industrial uses.


2021 ◽  
Vol 5 (2) ◽  
pp. 38
Author(s):  
Xing Peng ◽  
Lingbao Kong ◽  
Jerry Ying Hsi Fuh ◽  
Hao Wang

Additive manufacturing (AM) technology has rapidly evolved with research advances related to AM processes, materials, and designs. The advantages of AM over conventional techniques include an augmented capability to produce parts with complex geometries, operational flexibility, and reduced production time. However, AM processes also face critical issues, such as poor surface quality and inadequate mechanical properties. Therefore, several post-processing technologies are applied to improve the surface quality of the additively manufactured parts. This work aims to document post-processing technologies and their applications concerning different AM processes. Various types of post-process treatments are reviewed and their integrations with AM process are discussed.


Sign in / Sign up

Export Citation Format

Share Document