scholarly journals Formulation, calibration and validation of the DAIS model (version 1), a simple Antarctic Ice Sheet model sensitive to variations of sea level and ocean subsurface temperature

2014 ◽  
Vol 7 (2) ◽  
pp. 1791-1827
Author(s):  
G. Shaffer

Abstract. The Dcess Antarctic Ice Sheet (DAIS) model is presented. Model hindcasts of Antarctic Ice Sheet (AIS) sea level equivalent are forced by reconstructed Antarctic temperatures, global mean sea level and high-latitude, subsurface ocean temperatures, the latter calculated using the Danish Center for Earth System Science (DCESS) Earth System Model forced by reconstructed global mean atmospheric temperatures. The model is calibrated by comparing such hindcasts for different model configurations with paleoreconstructions of AIS sea level equivalent from the last interglacial, the last glacial maximum and the mid-Holocene. The calibrated model is then validated against present estimates of the rate of AIS ice loss. It is found that a high-order dependency of ice flow at the grounding line on water depth there is needed to capture the observed response of the AIS at ice age terminations. Furthermore it is found that a dependency of this ice flow on ocean subsurface temperature by way of ice shelf demise and a resulting buttressing decrease is needed to explain the contribution of the AIS to global mean sea level rise at the last interglacial. When forced and calibrated in this way, model hindcasts of the rate of present day AIS ice loss agree with recent, data-based estimates of this ice loss rate.

2014 ◽  
Vol 7 (4) ◽  
pp. 1803-1818 ◽  
Author(s):  
G. Shaffer

Abstract. The DCESS (Danish Center for Earth System Science) Antarctic Ice Sheet (DAIS) model is presented. Model hindcasts of Antarctic ice sheet (AIS) sea level equivalent are forced by reconstructed Antarctic temperatures, global mean sea level and high-latitude, ocean subsurface temperatures, the latter calculated using the DCESS model forced by reconstructed global mean atmospheric temperatures. The model is calibrated by comparing such hindcasts for different model configurations with paleoreconstructions of AIS sea level equivalent from the last interglacial, the last glacial maximum and the mid-Holocene. The calibrated model is then validated against present estimates of the rate of AIS ice loss. It is found that a high-order dependency of ice flow at the grounding line on water depth there is needed to capture the observed response of the AIS at ice age terminations. Furthermore, it is found that a dependency of this ice flow on ocean subsurface temperature by way of ice shelf demise and a resulting buttressing decrease is needed to explain the contribution of the AIS to global mean sea level rise at the last interglacial. When forced and calibrated in this way, model hindcasts of the rate of present-day AIS ice loss agree with recent, data-based estimates of this ice loss rate.


2020 ◽  
Author(s):  
Jim Jordan ◽  
Hilmar Gudmundsson ◽  
Adrian Jenkins ◽  
Chris Stokes ◽  
Stewart Jamieson ◽  
...  

<p>The East Antarctic Ice Sheet (EAIS) is the single largest potential contributor to future global mean sea level rise, containing a water mass equivalent of 53 m. Recent work has found the overall mass balance of the EAIS to be approximately in equilibrium, albeit with large uncertainties. However, changes in oceanic conditions have the potential to upset this balance. This could happen by both a general warming of the ocean and also by shifts in oceanic conditions allowing warmer water masses to intrude into ice shelf cavities.</p><p>We use the Úa numerical ice-flow model, combined with ocean-melt rates parameterized by the PICO box mode, to predict the future contribution to global-mean sea level of the EAIS. Results are shown for the next 100 years under a range of emission scenarios and oceanic conditions on a region by region basis, as well as for the whole of the EAIS. </p>


2020 ◽  
Author(s):  
Jun-Young Park ◽  
Fabian Schloesser ◽  
Axel Timmermann ◽  
Dipayan Choudhury ◽  
June-Yi Lee ◽  
...  

<p>One of the largest uncertainties in projecting future global mean sea level (GSML) rise in response to anthropogenic global warming originates from the Antarctic ice sheet (AIS) contribution. Previous studies suggested that a potential AIS collapse due to the Marine Ice Sheet Instability (MISI) and Marine Ice Cliff Instability (MICI) may contribute up to 1m GMSL rise by the year 2100. However, these estimates were based on uncoupled ice sheet models that do not capture interactions between the AIS and the ocean and atmosphere. Here, we explore future GMSL projections using a three-dimensional coupled climate-ice sheet model (LOVECLIP) that simulates ice sheet dynamics in both hemispheres. The model was forced by increasing CO<sub>2</sub> concentrations following the Shared Socioeconomic Pathway (SSP) 1-1.9, 2-4.5 and 5-8.5 scenarios. Over the next 80 years, the corresponding GMSL contribution from AIS amounts to about 2cm, 8cm and 11cm, respectively. Additional sensitivity experiments show that AIS meltwater flux in response to the SSP 5-8.5 CO<sub>2</sub> concentrations causes subsurface Southern Ocean warming which leads to an additional 20% AIS melting and a reduction in Southern Hemispheric future warming.</p>


2021 ◽  
Author(s):  
Jacqueline Austermann ◽  
Mark Hoggard ◽  
Konstantin Latychev ◽  
Fred Richards ◽  
Jerry Mitrovica

It is generally agreed that the Last Interglacial (LIG; ~130-115ka) was a time when global average temperatures and global mean sea level were higher than they are today. However, the exact timing, magnitude, and spatial pattern of ice melt is much debated. One difficulty in extracting past global mean sea level from local observations is that their elevations need to be corrected for glacial isostatic adjustment (GIA), which requires knowledge of Earth’s internal viscoelastic structure. While this structure is generally assumed to be radially symmetric, evidence from seismology, geodynamics, and mineral physics indicates that large lateral variations in viscosity exist within the mantle. In this study, we construct a new model of Earth’s internal structure by converting shear wave speed into viscosity using parameterisations from mineral physics experiments and geodynamical constraints on Earth’s thermal structure. We use this 3D Earth structure, which includes both variations in lithospheric thickness and lateral variations in viscosity, to calculate the first 3D GIA prediction for LIG sea level. We find that the difference between predictions with and without lateral Earth structure can be meters to 10s of meters in the near field of former ice sheets, and up to a few meters in their far field. We demonstrate how forebulge dynamics and continental levering are affected by laterally varying Earth structure, with a particular focus on those sites with prominent LIG sea level records. Results from three 3D GIA calculations show that accounting for lateral structure acts to increase local sea level by up to ~1.5m at the Seychelles and minimally decrease it in Western Australia. We acknowledge that this result is only based on a few simulations, but if robust, this shift brings estimates of global mean sea level from these two sites into closer agreement with each other. We further demonstrate that simulations with a suitable radial viscosity profile can be used to locally approximate the 3D GIA result, but that these radial profiles cannot be found by simply averaging viscosity below the sea level indicator site.


2019 ◽  
Author(s):  
Constantijn J. Berends ◽  
Bas de Boer ◽  
Aisling M. Dolan ◽  
Daniel J. Hill ◽  
Roderik S. W. van de Wal

Abstract. In order to investigate the relation between ice sheets and climate in a warmer-than-present world, recent research has focussed on the Late Pliocene, 3.6 to 2.58 million years ago. It is the most recent period in Earth history when such a climate state existed for a significant duration of time. Marine Isotope Stage (MIS) M2 (~ 3.3 Myr ago) is a strong positive excursion in benthic oxygen records in the middle of the otherwise warm and relatively stable Late Pliocene. However, the relative contributions to the benthic δ18O signal from deep-ocean cooling and growing ice sheets are still uncertain. Here, we present results from simulations of the late Pliocene with a hybrid ice-sheet–climate model, showing a reconstruction of ice sheet geometry, sea-level and atmospheric CO2. Initial experiments simulating the last four glacial cycles indicate that this model yields results which are in good agreement with proxy records in terms of global mean sea level, benthic oxygen isotope abundance, ice core-derived surface temperature and atmospheric CO2 concentration. For the Late Pliocene, our results show an atmospheric CO2 concentration during MIS M2 of 233–249 ppmv, and a drop in global mean sea level of 10 to 25 m. Uncertainties are larger during the warmer periods leading up to and following MIS M2. CO2 concentrations during the warm intervals in the Pliocene, with sea-level high stands of 8–14 m above present-day, varied between 320 and 400 ppmv, lower than indicated by some proxy records but in line with earlier model reconstructions.


2021 ◽  
Author(s):  
Emily A. Hill ◽  
Sebastian H. R. Rosier ◽  
G. Hilmar Gudmundsson ◽  
Matthew Collins

Abstract. The future of the Antarctic Ice Sheet in response to climate warming is one of the largest sources of uncertainty in estimates of future changes in global mean sea level (∆GMSL). Mass loss is currently concentrated in regions of warm circumpolar deep water, but it is unclear how ice shelves currently surrounded by relatively cold ocean waters will respond to climatic changes in the future. Studies suggest that warm water could flush the Filchner-Ronne (FR) ice shelf cavity during the 21st century, but the inland ice sheet response to a drastic increase in ice shelf melt rates, is poorly known. Here, we use an ice flow model and uncertainty quantification approach to project the GMSL contribution of the FR basin under RCP emissions scenarios, and assess the forward propagation and proportional contribution of uncertainties in model parameters (related to ice dynamics, and atmospheric/oceanic forcing) on these projections. Our probabilistic projections, derived from an extensive sample of the parameter space using a surrogate model, reveal that the FR basin is unlikely to contribute positively to sea level rise by the 23rd century. This is primarily due to the mitigating effect of increased accumulation with warming, which is capable of suppressing ice loss associated with ocean–driven increases in sub-shelf melt. Mass gain (negative ∆GMSL) from the FR basin increases with warming, but uncertainties in these projections also become larger. In the highest emission scenario RCP 8.5, ∆GMSL is likely to range from −103 to 26 mm, and this large spread can be apportioned predominantly to uncertainties in parameters driving increases in precipitation (30 %) and sub-shelf melting (44 %). There is potential, within the bounds of our input parameter space, for major collapse and retreat of ice streams feeding the FR ice shelf, and a substantial positive contribution to GMSL (up to approx. 300 mm), but we consider such a scenario to be very unlikely. Adopting uncertainty quantification techniques in future studies will help to provide robust estimates of potential sea level rise and further identify target areas for constraining projections.


2019 ◽  
Vol 15 (4) ◽  
pp. 1603-1619 ◽  
Author(s):  
Constantijn J. Berends ◽  
Bas de Boer ◽  
Aisling M. Dolan ◽  
Daniel J. Hill ◽  
Roderik S. W. van de Wal

Abstract. In order to investigate the relation between ice sheets and climate in a warmer-than-present world, recent research has focussed on the Late Pliocene, 3.6 to 2.58 million years ago. It is the most recent period in Earth's history when such a warm climate state existed for a significant duration of time. Marine Isotope Stage (MIS) M2 (∼3.3 Myr ago) is a strong positive excursion in benthic oxygen records in the middle of the otherwise warm and relatively stable Late Pliocene. However, the relative contributions to the benthic δ18O signal from deep ocean cooling and growing ice sheets are still uncertain. Here, we present results from simulations of the Late Pliocene with a hybrid ice-sheet–climate model, showing a reconstruction of ice sheet geometry, sea level and atmospheric CO2. Initial experiments simulating the last four glacial cycles indicate that this model yields results which are in good agreement with proxy records in terms of global mean sea level, benthic oxygen isotope abundance, ice-core-derived surface temperature and atmospheric CO2 concentration. For the Late Pliocene, our results show an atmospheric CO2 concentration during MIS M2 of 233–249 ppmv and a drop in global mean sea level of 10 to 25 m. Uncertainties are larger during the warmer periods leading up to and following MIS M2. CO2 concentrations during the warm intervals in the Pliocene, with sea-level high stands of 8–14 m above the present day, varied between 320 and 400 ppmv, lower than indicated by some proxy records but in line with earlier model reconstructions.


2020 ◽  
Author(s):  
Miren Vizcaino ◽  
Laura Muntjewerf ◽  
Raymond Sellevold ◽  
Carolina Ernani da Silva ◽  
Michele Petrini ◽  
...  

<p>The Greenland ice sheet (GrIS) has been losing mass in the last several decades, with a current contributing of around 0.7 mm per year to global mean sea level rise (SLR). Projections of future melt rates are often derived from standalone ice sheet models, forced by data from global or regional climate models. In many cases, the surface mass balance parameterization relies on simplified schemes that relate melt with surface temperature.</p><p>In this study, we present a mass and energy conserving, 350-year simulation with the Community Earth System Model version 2.1 (CESM2.1) bidirectionally coupled to the Community Ice Sheet Model version 2.1 (CISM2.1). In this simulation, the carbon dioxide concentration is initially increasing by 1% per year  from pre-industrial levels (287 ppmv), to a quadrupling (1140 ppmv) and stabilization after year 140. The model simulates a global warming of 5.3 K and 8.5 K with respect to preindustrial by years 131-150 and 331-150, respectively, and a strong decline in the North Atlantic Meridional Overturning Circulation that is initiated before GrIS runoff substantially increases. 91% of the total GrIS contribution to global mean sea level rise (SLR, 1140 mm) is simulated in the two centuries following CO2 stabilization, as the mass loss increases from 2.2 mm SLR per year in 131-150 to 6.6 mm SLR per year in 331-351. This increase is caused by melt acceleration as the ablation areas expand, and Greenland summer surface temperatures predominantly approach melt conditions when the global warming exceeds a certain threshold (around 4.2 K).  This enhances the albedo and turbulent heat fluxes contribution to total melt energy.  </p>


Sign in / Sign up

Export Citation Format

Share Document