scholarly journals Uncertainty, sensitivity analysis and the role of data based mechanistic modeling in hydrology

2007 ◽  
Vol 11 (4) ◽  
pp. 1249-1266 ◽  
Author(s):  
M. Ratto ◽  
P. C. Young ◽  
R. Romanowicz ◽  
F. Pappenberger ◽  
A. Saltelli ◽  
...  

Abstract. In this paper, we discuss a joint approach to calibration and uncertainty estimation for hydrologic systems that combines a top-down, data-based mechanistic (DBM) modelling methodology; and a bottom-up, reductionist modelling methodology. The combined approach is applied to the modelling of the River Hodder catchment in North-West England. The top-down DBM model provides a well identified, statistically sound yet physically meaningful description of the rainfall-flow data, revealing important characteristics of the catchment-scale response, such as the nature of the effective rainfall nonlinearity and the partitioning of the effective rainfall into different flow pathways. These characteristics are defined inductively from the data without prior assumptions about the model structure, other than it is within the generic class of nonlinear differential-delay equations. The bottom-up modelling is developed using the TOPMODEL, whose structure is assumed a priori and is evaluated by global sensitivity analysis (GSA) in order to specify the most sensitive and important parameters. The subsequent exercises in calibration and validation, performed with Generalized Likelihood Uncertainty Estimation (GLUE), are carried out in the light of the GSA and DBM analyses. This allows for the pre-calibration of the the priors used for GLUE, in order to eliminate dynamical features of the TOPMODEL that have little effect on the model output and would be rejected at the structure identification phase of the DBM modelling analysis. In this way, the elements of meaningful subjectivity in the GLUE approach, which allow the modeler to interact in the modelling process by constraining the model to have a specific form prior to calibration, are combined with other more objective, data-based benchmarks for the final uncertainty estimation. GSA plays a major role in building a bridge between the hypothetico-deductive (bottom-up) and inductive (top-down) approaches and helps to improve the calibration of mechanistic hydrological models, making their properties more transparent. It also helps to highlight possible mis-specification problems, if these are identified. The results of the exercise show that the two modelling methodologies have good synergy; combining well to produce a complete joint modelling approach that has the kinds of checks-and-balances required in practical data-based modelling of rainfall-flow systems. Such a combined approach also produces models that are suitable for different kinds of application. As such, the DBM model considered in the paper is developed specifically as a vehicle for flow and flood forecasting (although the generality of DBM modelling means that a simulation version of the model could be developed if required); while TOPMODEL, suitably calibrated (and perhaps modified) in the light of the DBM and GSA results, immediately provides a simulation model with a variety of potential applications, in areas such as catchment management and planning.

2006 ◽  
Vol 3 (5) ◽  
pp. 3099-3146 ◽  
Author(s):  
M. Ratto ◽  
P. C. Young ◽  
R. Romanowicz ◽  
F. Pappenberge ◽  
A. Saltelli ◽  
...  

Abstract. In this paper, we discuss the problem of calibration and uncertainty estimation for hydrologic systems from two points of view: a bottom-up, reductionist approach; and a top-down, data-based mechanistic (DBM) approach. The two approaches are applied to the modelling of the River Hodder catchment in North-West England. The bottom-up approach is developed using the TOPMODEL, whose structure is evaluated by global sensitivity analysis (GSA) in order to specify the most sensitive and important parameters; and the subsequent exercises in calibration and validation are carried out in the light of this sensitivity analysis. GSA helps to improve the calibration of hydrological models, making their properties more transparent and highlighting mis-specification problems. The DBM model provides a quick and efficient analysis of the rainfall-flow data, revealing important characteristics of the catchment-scale response, such as the nature of the effective rainfall nonlinearity and the partitioning of the effective rainfall into different flow pathways. TOPMODEL calibration takes more time and it explains the flow data a little less well than the DBM model. The main differences in the modelling results are in the nature of the models and the flow decomposition they suggest. The "quick'' (63%) and "slow'' (37%) components of the decomposed flow identified in the DBM model show a clear partitioning of the flow, with the quick component apparently accounting for the effects of surface and near surface processes; and the slow component arising from the displacement of groundwater into the river channel (base flow). On the other hand, the two output flow components in TOPMODEL have a different physical interpretation, with a single flow component (95%) accounting for both slow (subsurface) and fast (surface) dynamics, while the other, very small component (5%) is interpreted as an instantaneous surface runoff generated by rainfall falling on areas of saturated soil. The results of the exercise show that the two modelling methodologies have good synergy; combining well to produce a complete modelling approach that has the kinds of checks-and-balances required in practical data-based modelling of rainfall-flow systems. Such a combined approach also produces models that are suitable for different kinds of application. As such, the DBM model can provides an immediate vehicle for flow and flood forecasting; while TOPMODEL, suitably calibrated (and perhaps modified) in the light of the DBM and GSA results, immediately provides a simulation model with a variety of potential applications, in areas such as catchment management and planning.


RSC Advances ◽  
2016 ◽  
Vol 6 (51) ◽  
pp. 45923-45930 ◽  
Author(s):  
Peixun Fan ◽  
Minlin Zhong ◽  
Benfeng Bai ◽  
Guofan Jin ◽  
Hongjun Zhang

Large-scale and cost-effective generation of desired 3D self-supporting macro–micronano-nanowire architectures is realized by a top-down and bottom-up combined approach.


Author(s):  
Zheng Chen ◽  
Suzanne Tamang ◽  
Adam Lee ◽  
Xiang Li ◽  
Marissa Passantino ◽  
...  

2011 ◽  
Vol 133 (7) ◽  
Author(s):  
Shun Takai ◽  
Vivek K. Jikar ◽  
Kenneth M. Ragsdell

This paper proposes an approach to integrate top-down and bottom-up procedures for product concept and design selection. The top-down procedure identifies relationships between product requirements and design parameters and specifies an acceptable range of design parameters (called a design range) from product specifications and tolerances. Then, within the design range, the bottom-up procedure optimizes design specifications and tolerances in order to minimize a product cost. A product cost is defined as a sum of component costs, each of which is a function of design specifications and tolerances. A concept, with design specifications and tolerances, that minimizes product cost is an optimum concept. The proposed approach is demonstrated using an illustrative example. Sensitivity analysis with respect to the parameters of the product cost illustrates that the shape of design range defines how responsive a product is to uncertainty in cost function parameters relevant to design tolerances.


PsycCRITIQUES ◽  
2005 ◽  
Vol 50 (19) ◽  
Author(s):  
Michael Cole
Keyword(s):  
Top Down ◽  

Sign in / Sign up

Export Citation Format

Share Document