scholarly journals Optimal operation of a multipurpose multireservoir system in the Eastern Nile River Basin

2010 ◽  
Vol 14 (10) ◽  
pp. 1895-1908 ◽  
Author(s):  
Q. Goor ◽  
C. Halleux ◽  
Y. Mohamed ◽  
A. Tilmant

Abstract. The upper Blue Nile River Basin in Ethiopia is a largely untapped resource despite its huge potential for hydropower generation and irrigated agriculture. Controversies exist as to whether the numerous infrastructural development projects that are on the drawing board in Ethiopia will generate positive or negative externalities downstream in Sudan and Egypt. This study attempts at (1) examining the (re-)operation of infrastructures, in particular the proposed reservoirs in Ethiopia and the High Aswan Dam and (2) assessing the economic benefits and costs associated with the storage infrastructures in Ethiopia and their spatial and temporal distribution. To achieve this, a basin-wide integrated hydro-economic model has been developed. The model integrates essential hydrologic, economic and institutional components of the river basin in order to explore both the hydrologic and economic consequences of various policy options and planned infrastructural projects. Unlike most of the deterministic economic-hydrologic models reported in the literature, a stochastic programming formulation has been adopted in order to: (i) understand the effect of the hydrologic uncertainty on management decisions, (ii) determine allocation policies that naturally hedge against the hydrological risk, and (iii) assess the relevant risk indicators. The study reveals that the development of four mega dams in the upper part of the Blue Nile Basin would change the drawdown refill cycle of the High Aswan Dam. Should the operation of the reservoirs be coordinated, they would enable an average annual saving of at least 2.5 billion m3 through reduced evaporation losses from the Lake Nasser. Moreover, the new reservoirs (Karadobi, Beko-Abo, Mandaya and Border) in Ethiopia would have significant positive impacts on hydropower generation and irrigation in Ethiopia and Sudan: at the basin scale, the annual energy generation is boosted by 38.5 TWh amongst which 14.2 TWh due to storage. Moreover, the regulation capacity of the above mentioned reservoirs would enable an increase of the Sudanese irrigated area by 5.5%.

2010 ◽  
Vol 7 (4) ◽  
pp. 4331-4369 ◽  
Author(s):  
Q. Goor ◽  
C. Halleux ◽  
Y. Mohamed ◽  
A. Tilmant

Abstract. The upper Blue Nile River Basin in Ethiopia is a largely untapped resource despite its huge potential for hydropower generation and irrigated agriculture. Controversies exist as to whether the numerous infrastructural development projects that are on the drawing board in Ethiopia will generate positive or negative externalities downstream in Sudan and Egypt. This study attempts at 1) examining the (re-)operation of infrastructures, in particular the proposed reservoirs in Ethiopia and the High Aswan Dam and 2) assessing the economic benefits and costs associated with the storage infrastructures in Ethiopia and their spatial and temporal distribution. To achieve this, a basin-wide integrated hydro-economic model has been developed. The model integrates essential hydrologic, economic and institutional components of the river basin in order to explore both the hydrologic and economic consequences of various policy options and planned infrastructural projects. Unlike most of the deterministic economic-hydrologic models reported in the literature, a stochastic programming formulation has been adopted in order to: i) understand the effect of the hydrologic uncertainty on management decisions, ii) determine allocation policies that naturally hedge against the hydrological risk, and iii) assess the relevant risk indicators. The study reveals that the development of four mega dams in the upper part of the Blue Nile Basin would change the drawdown refill cycle of the High Aswan Dam. Should the operation of the reservoirs be coordinated, they would enable an average annual saving of at least 2.5 billion m3 through reduced evaporation losses from the Lake Nasser. Moreover, the new reservoirs (Karadobi, Beko-Abo, Mandaya and Border) in Ethiopia would have significant positive impacts on hydropower generation and irrigation in Ethiopia and Sudan: at the basin scale, the annual energy generation is boosted by 38.5 TWh amongst which 14.2 TWh due to storage. Moreover, the regulation capacity of the above mentioned reservoirs would enable an increase of the Sudanese irrigated area by 5.5%.


2020 ◽  
Author(s):  
Giacomo Trombetta ◽  
Andrea Castelletti ◽  
Matteo Giuliani ◽  
Marta Zaniolo ◽  
Paul Block

<p>Transboundary river basins worldwide are commonly managed by unique, institutionally independent decision makers and characterized by multiple stakeholders with conflicting interests, including distribution, co-management, and use of water resources across sectors and among countries. This competition is expected to exacerbate in the future due to climate change induced water scarcity, increasing demand, and the development of infrastructure, which is often criticized for potentially jeopardizing downstream security by affecting water supply, irrigation, and energy production. </p><p>The Nile River basin is an emblematic transboundary basin, encompassing 11 countries and home to one-third of the African population. The largest fraction of Nile River streamflow originates in Ethiopia and is conveyed into the system via the Blue Nile. However, the larger water users have historically been downstream, in particular Egypt, where the High Aswan Dam (HAD) constitutes the backbone of Egyptian electricity supply and enables the irrigation of vast agricultural districts. This geographic disparity between water origination and consumption provides both the potential for conflict and the rationale for cooperation. Currently, the ongoing construction of the soon-to-be largest dam in Africa, the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile, is highly debated given concerns rising from how it will affect water supply and power generation in downstream countries. However, GERD may represent a response to the frequent regional power shortages, foster economic development, and represents a unique opportunity for cooperation between riparian countries from which all parties can benefit.</p><p>In this work we explore how varying levels of cooperation among the riparian countries, from individualistic behavior to full cooperation, might impact hydropower production and irrigated agriculture in the Nile River basin. We use an Evolutionary Multi-Objective Direct Policy Search approach to design optimal operation of a three-dimensional reservoir system, including GERD (Ethiopia), HAD (Egypt), and Merowe Dam (Sudan), under historical hydro-climatic conditions and under different cooperation levels, assuming the capacity of re-optimization of the High Aswan Dam and the Merowe Dam. Expected results may illustrate the benefits of implementing a centralized rather than an individualistic strategy, highlighting the value of full information exchange and of basin-wide cooperation.</p>


Author(s):  
Hisham Eldardiry ◽  
Faisal Hossain

AbstractTransboundary river basins are experiencing extensive dam development that challenges future water management, especially for downstream nations. Thus, adapting the operation of existing reservoirs is indispensable to cope with alterations in flow regime. We proposed a Forecast-based Adaptive Reservoir Operation (namely FARO) framework to evaluate the use of long-term climate forecasts in improving real-time reservoir operations. The FARO approach was applied to the High Aswan Dam (HAD) in the Nile river basin. Monthly precipitation and temperature forecasts at up to 12 months of lead time are used from a suite of eight North American Multimodel Ensemble (NMME) models. The value of NMME-based forecasts to reservoir operations was compared with perfect and climatology-based forecasts over an optimization horizon of 10 years from 1993 to 2002. Our results indicated that the forecast horizon for HAD operation ranges between 5- and 12-month lead time at low and high demand scenarios, respectively, beyond which the forecast information no longer improves the release decision. The forecast value to HAD operation is more pronounced in the months following the flooding season (October through December). During these months, the skill of streamflow forecasts using NMME forcings outperforms the climatology-based forecasts. When considering the operation of upstream Grand Ethiopian Renaissance Dam (GERD), using streamflow forecasts minimally helps to maintain current target objectives of HAD operation and therefore result in higher operation costs as opposed to current conditions without GERD. Our study underlined the importance of deriving a new adaptive operating policy for HAD to improve the value of available forecasts while considering GERD filling and operation phases.


2014 ◽  
Vol 29 (3) ◽  
pp. 316-328 ◽  
Author(s):  
Yasir S.A. ALI ◽  
Alessandra CROSATO ◽  
Yasir A. MOHAMED ◽  
Seifeldin H. ABDALLA ◽  
Nigel G. WRIGHT

2017 ◽  
Vol 07 (01) ◽  
pp. 65-75 ◽  
Author(s):  
Andualem Shigute Bokke ◽  
Meron Teferi Taye ◽  
Patrick Willems ◽  
Shimelis Asefu Siyoum

2020 ◽  
Vol 4 (4) ◽  
pp. 699-711
Author(s):  
Justin A. Le ◽  
Hesham M. El-Askary ◽  
Mohamed Allali ◽  
Eman Sayed ◽  
Hani Sweliem ◽  
...  

AbstractUsing new mathematical and data-driven techniques, we propose new indices to measure and predict the strength of different El Niño events and how they affect regions like the Nile River Basin (NRB). Empirical Mode Decomposition (EMD), when applied to Southern Oscillation Index (SOI), yields three Intrinsic Mode Functions (IMF) tracking recognizable and physically significant non-stationary processes. The aim is to characterize underlying signals driving ENSO as reflected in SOI, and show that those signals also meaningfully affect other physical processes with scientific and predictive utility. In the end, signals are identified which have a strong statistical relationship with various physical factors driving ENSO variation. IMF 6 is argued to track El Niño and La Niña events occurrence, while IMFs 7 and 8 represent another signal, which reflects on variations in El Niño strength and variability between events. These we represent an underlying inter-annual variation between different El Niño events. Due to the importance of the latter, IMFs 7 and 8, are defined as Interannual ENSO Variability Indices (IEVI) and referred to as IEVI α and IEVI β. EMD when applied to the NRB precipitation, affecting the Blue Nile yield, identifying the IEVI-driven IMFs, with high correlations of up to ρ = 0.864, suggesting a decadal variability within NRB that is principally driven by interannual decadal-scale variability highlighting known geographical relationships. Significant hydrological processes, driving the Blue Nile yield, are accurately identified using the IEVI as a predictor. The IEVI-based model performed significantly at p = 0.038 with Blue Nile yield observations.


Sign in / Sign up

Export Citation Format

Share Document