scholarly journals A summer climate regime over Europe modulated by the North Atlantic Oscillation

2011 ◽  
Vol 15 (1) ◽  
pp. 57-64 ◽  
Author(s):  
G. Wang ◽  
A. J. Dolman ◽  
A. Alessandri

Abstract. Recent summer heat waves in Europe were found to be preceded by precipitation deficits in winter. Numerical studies suggest that these phenomena are dynamically linked by land-atmosphere interactions. However, there exists as yet no complete observational evidence that connects summer climate variability to winter precipitation and the relevant circulation patterns. In this paper, we investigate the functional responses of summer mean and maximum temperature (June–August, Tmean and Tmax) as well as soil moisture proxied by the self-calibrating Palmer drought severity index (scPDSI) to preceding winter precipitation (January–March, PJFM) for the period 1901–2005. All the analyzed summer fields show distinctive responses to PJFM over the Mediterranean. We estimate that 10 ~ 15% of the interannual variability of Tmax and Tmean over the Mediterranean is statistically forced by PJFM. For the scPDSI this amounts to 10 ~ 25%. Further analysis shows that these responses are highly correlated to the North Atlantic Oscillation (NAO) regime over the Mediterranean. We suggest that NAO modulates European summer temperature by controlling winter precipitation that initializes the moisture states that subsequently interact with temperature. This picture of relations between European summer climate and NAO as well as winter precipitation suggests potential for improved seasonal prediction of summer climate for particular extreme events.

2010 ◽  
Vol 10 (7) ◽  
pp. 1379-1391 ◽  
Author(s):  
K. M. Nissen ◽  
G. C. Leckebusch ◽  
J. G. Pinto ◽  
D. Renggli ◽  
S. Ulbrich ◽  
...  

Abstract. A climatology of cyclones with a focus on their relation to wind storm tracks in the Mediterranean region (MR) is presented. Trends in the frequency of cyclones and wind storms, as well as variations associated with the North Atlantic Oscillation (NAO), the East Atlantic/West Russian (EAWR) and the Scandinavian variability pattern (SCAND) are discussed. The study is based on the ERA40 reanalysis dataset. Wind storm tracks are identified by tracking clusters of adjacent grid boxes characterised by extremely high local wind speeds. The wind track is assigned to a cyclone track independently identified with an objective scheme. Areas with high wind activity – quantified by extreme wind tracks – are typically located south of the Golf of Genoa, south of Cyprus, southeast of Sicily and west of the Iberian Peninsula. About 69% of the wind storms are caused by cyclones located in the Mediterranean region, while the remaining 31% can be attributed to North Atlantic or Northern European cyclones. The North Atlantic Oscillation, the East Atlantic/West Russian pattern and the Scandinavian pattern all influence the amount and spatial distribution of wind inducing cyclones and wind events in the MR. The strongest signals exist for the NAO and the EAWR pattern, which are both associated with an increase in the number of organised strong wind events in the eastern MR during their positive phase. On the other hand, the storm numbers decrease over the western MR for the positive phase of the NAO and over the central MR during the positive phase of the EAWR pattern. The positive phase of the Scandinavian pattern is associated with a decrease in the number of winter wind storms over most of the MR. A third of the trends in the number of wind storms and wind producing cyclones during the winter season of the ERA40 period may be attributed to the variability of the North Atlantic Oscillation.


2004 ◽  
Vol 17 (24) ◽  
pp. 4674-4691 ◽  
Author(s):  
Masahiro Watanabe

Abstract Anomalous atmospheric fields associated with the North Atlantic Oscillation (NAO) are analyzed on interannual and intraseasonal time scales in order to examine the extent to which the NAO is a regional phenomenon. Analyses on the interannual time scale reveal that the NAO signal is relatively confined to the Euro–Atlantic sector in December while it extends toward East Asia and the North Pacific in February. The difference is most clearly seen in the meridional wind anomaly, which shows a wave train along the Asian jet, collocated with an anomalous vorticity source near the jet entrance. Diagnoses using a linear barotropic model indicate that this wave train is interpreted as quasi-stationary Rossby waves trapped on the Asian jet waveguide, and effectively excited by the anomalous upper-level convergence over the Mediterranean Sea. It is found that, when the NAO accompanies the Mediterranean convergence (MC) anomaly, most frequently seen in February, the NAO indeed has a much wider horizontal structure than the classical picture, rather similar to the Arctic Oscillation. In such cases interannual variability of the NAO is tied to the East Asian climate variability such that the positive NAO tends to bring a surface warming over East Asia. Similar results are obtained from an analysis of individual NAO events based on low-pass-filtered daily fields, which additionally identified that the downstream extension occurs at the decay stage of the NAO event and the MC anomaly appears to be induced by the Ekman pumping associated with the NAO. The signal of the MC anomaly can be detected even at 5 days before the peak of the NAO, suggesting that the NAO influence to East Asia is predictable to some extent; therefore, monitoring the developing NAO event is useful to the medium-range weather forecast in East Asian countries.


Sign in / Sign up

Export Citation Format

Share Document