scholarly journals Supplementary material to "Multi-variable evaluation of land surface processes in forced and coupled modes reveals new error sources to the simulated water cycle in the IPSL climate model"

Author(s):  
Hiroki Mizuochi ◽  
Agnes Ducharne ◽  
Frédérique Cheruy ◽  
Josefine Ghattas ◽  
Amen Al-Yaari ◽  
...  
2020 ◽  
Author(s):  
Hiroki Mizuochi ◽  
Agnes Ducharne ◽  
Frédérique Cheruy ◽  
Josefine Ghattas ◽  
Amen Al-Yaari ◽  
...  

Abstract. Evaluating land surface models (LSMs) using available observations is important to understand the potential and limitations of current Earth system models in simulating water- and carbon-related variables. To reveal the error sources of a land surface model (LSM), four essential climate variables have been evaluated in this paper (i.e., surface soil moisture, evapotranspiration, leaf area index, and surface albedo) via simulations with IPSL LSM ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems), particularly focusing on the difference between (i) forced simulations with atmospheric forcing data (WATCH-Forcing-DATA-ERA-Interim: WFDEI) and (ii) coupled simulations with the IPSL atmospheric general circulation model. Results from statistical evaluation using satellite- and ground-based reference data show that ORCHIDEE is well equipped to represent spatiotemporal patterns of all variables in general. However, further analysis against various landscape/meteorological factors (e.g., plant functional type, slope, precipitation, and irrigation) suggests potential uncertainty relating to freezing/snowmelt, temperate plant phenology, irrigation, as well as contrasted responses between forced and coupled mode simulations. The biases in the simulated variables are amplified in coupled mode via surface–atmosphere interactions, indicating a strong link between irrigation–precipitation and a relatively complex link between precipitation–evapotranspiration that reflects the hydrometeorological regime of the region (energy-limited or water-limited) and snow-albedo feedback in mountainous and boreal regions. The different results between forced and coupled modes imply the importance of model evaluation under both modes to isolate potential sources of uncertainty in the model.


2021 ◽  
Vol 25 (4) ◽  
pp. 2199-2221
Author(s):  
Hiroki Mizuochi ◽  
Agnès Ducharne ◽  
Frédérique Cheruy ◽  
Josefine Ghattas ◽  
Amen Al-Yaari ◽  
...  

Abstract. Evaluating land surface models (LSMs) using available observations is important for understanding the potential and limitations of current Earth system models in simulating water- and carbon-related variables. To reveal the error sources of a LSM, five essential climate variables have been evaluated in this paper (i.e., surface soil moisture, evapotranspiration, leaf area index, surface albedo, and precipitation) via simulations with the IPSL (Institute Pierre Simon Laplace) LSM ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) model, particularly focusing on the difference between (i) forced simulations with atmospheric forcing data (WATCH Forcing Data ERA-Interim – WFDEI) and (ii) coupled simulations with the IPSL atmospheric general circulation model. Results from statistical evaluation, using satellite- and ground-based reference data, show that ORCHIDEE is well equipped to represent spatiotemporal patterns of all variables in general. However, further analysis against various landscape and meteorological factors (e.g., plant functional type, slope, precipitation, and irrigation) suggests potential uncertainty relating to freezing and/or snowmelt, temperate plant phenology, irrigation, and contrasted responses between forced and coupled mode simulations. The biases in the simulated variables are amplified in the coupled mode via surface–atmosphere interactions, indicating a strong link between irrigation–precipitation and a relatively complex link between precipitation–evapotranspiration that reflects the hydrometeorological regime of the region (energy limited or water limited) and snow albedo feedback in mountainous and boreal regions. The different results between forced and coupled modes imply the importance of model evaluation under both modes to isolate potential sources of uncertainty in the model.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1151
Author(s):  
Jaeyoung Song ◽  
Sungbo Shim ◽  
Ji-Sun Kim ◽  
Jae-Hee Lee ◽  
Young-Hwa Byun ◽  
...  

Land surface processes are rarely studied in Detection and Attribution Model Inter-comparison Project (DAMIP) experiments on climate change. We analyzed a CMIP6 DAMIP historical experiment by using multi-linear regression (MLRM) and analysis of variance methods. We focused on energy and water budgets, including gross primary productivity (GPP). In MLRM, we estimated each forcing’s contribution and identified the role of natural forcing, which is usually ignored. Contributions of the forcing factors varied by region, and high-ranked variables such as net radiation could receive multiple influences. Greenhouse gases (GHG) accelerated energy and water cycles over the global land surface, including evapotranspiration, runoff, GPP, and water-use efficiency. Aerosol (AER) forcing displayed the opposite characteristics, and natural forcing accounted for short-term changes. A long-term analysis of total soil moisture and water budget indicated that as the AER increases, the available water on the global land increases continuously. In the recent past, an increase in net radiation (i.e., a lowered AER) reduced surface moisture and hastened surface water cycle (GHG effect). The results imply that aerosol emission and its counterbalance to GHG are essential to most land surface processes. The exception to this is GPP, which was overdominated by GHG effects.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Wei Zhao ◽  
Ainong Li

Complex terrain, commonly represented by mountainous region, occupies nearly one-quarter of the Earth’s continental areas. An accurate understanding of water cycle, energy exchange, carbon cycle, and many other biogeophysical or biogeochemical processes in this area has become more and more important for climate change study. Due to the influences from complex topography and rapid variation in elevation, it is usually difficult for field measurements to capture the land-atmosphere interactions well, whereas land surface model (LSM) simulation provides a good alternative. A systematic review is introduced by pointing out the key issues for land surface processes simulation over complex terrain: (1) high spatial heterogeneity for land surface parameters in horizontal direction, (2) big variation of atmospheric forcing data in vertical direction related to elevation change, (3) scale effect on land surface parameterization in LSM, and (4) two-dimensional modelling which considers the gravity influence. Regarding these issues, it is promising for better simulation at this special region by involving higher spatial resolution atmospheric forcing data which can reflect the influences from topographic changes and making necessary improvements on model structure related to topographic factors. In addition, the incorporation of remote sensing techniques will significantly help to reduce uncertainties in model initialization, simulation, and validation.


2011 ◽  
Vol 111 (2) ◽  
pp. 197-214 ◽  
Author(s):  
Heidrun Matthes ◽  
Annette Rinke ◽  
Paul A. Miller ◽  
Peter Kuhry ◽  
Klaus Dethloff ◽  
...  

2014 ◽  
Vol 172 (10) ◽  
pp. 2791-2811 ◽  
Author(s):  
C. V. Srinivas ◽  
D. V. Bhaskar Rao ◽  
D. Hari Prasad ◽  
K. B. R. R. Hari Prasad ◽  
R. Baskaran ◽  
...  

2000 ◽  
Vol 38 (1) ◽  
pp. 117-140 ◽  
Author(s):  
Sharon Nicholson

Author(s):  
Paul A. Dirmeyer ◽  
Pierre Gentine ◽  
Michael B. Ek ◽  
Gianpaolo Balsamo

Sign in / Sign up

Export Citation Format

Share Document