scholarly journals Supplementary material to "Coastal and orographic effects on extreme precipitation revealed by weather radar observations"

Author(s):  
Francesco Marra ◽  
Moshe Armon ◽  
Efrat Morin
2021 ◽  
Author(s):  
Francesco Marra ◽  
Moshe Armon ◽  
Efrat Morin

Abstract. The yearly exceedance probability of extreme precipitation of multiple durations is crucial for infrastructure design, risk management and policymaking. Local extremes emerge from the interaction of weather systems with local terrain features such as coastlines and orography, however multi-duration extremes do not follow exactly the patterns of cumulative precipitation and are still not well understood. High-resolution information from weather radars could help us better quantifying their patterns, but traditional extreme-value analyses based on radar records were found too inaccurate for quantifying the extreme intensities for impact studies. Here, we propose a novel methodology for extreme precipitation frequency analysis based on relatively short weather radar records, and we use it to investigate coastal and orographic effects on extreme precipitation of durations between 10 minutes and 24 hours. Combining 11 years of radar data with 10-minute rain gauge data in the southeastern Mediterranean, we obtain estimates of the 1 in 100 years intensities with ~22 % standard error, which is lower than those obtained using traditional approaches on rain gauge data. We identify three distinct regimes, which respond differently to coastal and orographic forcing: short durations (~10 minutes), related to peak convective rain rates; hourly durations (~1 hours), related to the yield of individual convective cells; and long durations (~6–24 hours), related to the accumulation of multiple convective cells and to stratiform processes. At short and hourly durations, extreme return levels peak at the coastline, while at longer durations they peak corresponding to the orographic barriers. The distributions tail heaviness is rather uniform above the sea and rapidly changes in presence of orography, with opposing directions at short (decreasing tail heaviness, with a peak at hourly durations) and long (increasing) durations. These distinct effects suggest that short-scale hazards such as urban pluvial floods could be more of concern for the coastal regions, while longer-scale hazards such as flash floods could be more relevant in mountainous areas.


2017 ◽  
Vol 34 (7) ◽  
pp. 1585-1590 ◽  
Author(s):  
Valery Melnikov ◽  
Dusan S. Zrnić

AbstractIt is shown that the NEXRAD weather radar with enhanced detectability is capable of observing the evolution of convective thermals. The fields of radar differential reflectivity show that the upper parts of the thermals are observable due to Bragg scatter, whereas scattering from insects dominates in the lower parts. The thermal-top rise rate is between 1.5 and 3.7 m s−1 in the analyzed case. Radar observations of thermals also enable estimations of their maximum heights, horizontal sizes, and the turbulent dissipation rate within each thermal. These attributes characterize the intensity of convection.


2009 ◽  
Vol 26 (3) ◽  
pp. 430-443 ◽  
Author(s):  
Valery M. Melnikov ◽  
Richard J. Doviak

Abstract Weather radar observations of stratiform precipitation often reveal regions having very large measured Doppler spectrum widths, exceeding 7, and sometimes 10, m s−1. These widths are larger than those typically found in thunderstorms; widths larger than 4 m s−1 are associated with moderate or severe turbulence in thunderstorms. In this work, stratiform precipitation has been found to have layers of widths larger than 4 m s−1 in more than 80% of cases studied, wherein the shear of the wind on scales that are large compared to the dimensions of the radar resolution volume is the dominant contributor to spectrum width. Analyzed data show that if width ≤7 m s−1, and if the layers are not wavy or patchy, these layers have weak turbulence. On the other hand, regions having widths >4 m s−1 in patches or in wavelike structures are likely to have moderate to severe turbulence with the potential to be a hazard to safe flight. To separate the contributions to spectrum width from wind shear and turbulence and to evaluate the errors in turbulence estimates, data have been collected with elevation increments much less than a beamwidth. Despite beamwidth limitations, the small elevation increments reveal impressive structures in the fields. For example, the “cat’s eye” structure associated with Kelvin–Helmholtz waves is clearly exhibited in the fields of spectrum width observed at low-elevation angles, but not in the reflectivity or velocity fields. Reflectivity fields in stratiform precipitation are featureless compared to spectrum width fields.


2018 ◽  
Author(s):  
Gunter Stober ◽  
Jorge L. Chau ◽  
Juha Vierinen ◽  
Christoph Jacobi ◽  
Sven Wilhelm

2018 ◽  
Vol 57 (4) ◽  
pp. 797-820 ◽  
Author(s):  
Annakaisa von Lerber ◽  
Dmitri Moisseev ◽  
David A. Marks ◽  
Walter Petersen ◽  
Ari-Matti Harri ◽  
...  

AbstractCurrently, there are several spaceborne microwave instruments suitable for the detection and quantitative estimation of snowfall. To test and improve retrieval snowfall algorithms, ground validation datasets that combine detailed characterization of snowfall microphysics and spatial precipitation measurements are required. To this endpoint, measurements of snow microphysics are combined with large-scale weather radar observations to generate such a dataset. The quantitative snowfall estimates are computed by applying event-specific relations between the equivalent reflectivity factor and snowfall rate to weather radar observations. The relations are derived using retrieved ice particle microphysical properties from observations that were carried out at the University of Helsinki research station in Hyytiälä, Finland, which is about 64 km east of the radar. For each event, the uncertainties of the estimate are also determined. The feasibility of using this type of data to validate spaceborne snowfall measurements and algorithms is demonstrated with the NASA GPM Microwave Imager (GMI) snowfall product. The detection skill and retrieved surface snowfall precipitation of the GPROF detection algorithm, versions V04A and V05A, are assessed over southern Finland. On the basis of the 26 studied overpasses, probability of detection (POD) is 0.90 for version V04A and 0.84 for version V05A, and corresponding false-alarm rates are 0.09 and 0.10, respectively. A clear dependence of detection skill on cloud echo top height is shown: POD increased from 0.8 to 0.99 (V04A) and from 0.61 to 0.94 (V05A) as the cloud echo top altitude increased from 2 to 5 km. Both versions underestimate the snowfall rate by factors of 6 (V04A) and 3 (V05A).


Sign in / Sign up

Export Citation Format

Share Document