rain gauge data
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 51)

H-INDEX

30
(FIVE YEARS 4)

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1501
Author(s):  
Chung-Chieh Wang ◽  
Chih-Sheng Chang ◽  
Yi-Wen Wang ◽  
Chien-Chang Huang ◽  
Shih-Chieh Wang ◽  
...  

In this study, 24 h quantitative precipitation forecasts (QPFs) by a cloud-resolving model (with a grid spacing of 2.5 km) on days 1–3 for 29 typhoons in six seasons of 2010–2015 in Taiwan were examined using categorical scores and rain gauge data. The study represents an update from a previous study for 2010–2012, in order to produce more stable and robust statistics toward the high thresholds (typically with fewer sample points), which is our main focus of interest. This is important to better understand the model’s ability to predict such high-impact typhoon rainfall events. The overall threat scores (TS, defined as the fraction among all verification points that are correctly predicted to reach a given threshold to all points that are either observed or predicted to reach that threshold, or both) were 0.28 and 0.18 on day 1 (0–24 h) QPFs, 0.25 and 0.16 on day 2 (24–48 h) QPFs, and 0.15 and 0.08 on day 3 (48–72 h) QPFs at 350 mm and 500 mm, respectively, showing improvements over 5 km models. Moreover, as found previously, a strong dependence of higher TSs for larger rainfall events also existed, and the corresponding TSs at 350 and 500 mm for the top 5% of events were 0.39 and 0.25 on day 1, 0.38 and 0.21 on day 2, and 0.25 and 0.12 on day 3. Thus, for the top typhoon rainfall events that have the highest potential for hazards, the model exhibits an even higher ability for QPFs based on categorical scores. Furthermore, it is shown that the model has little tendency to overpredict or underpredict rainfall for all groups of events with different rainfall magnitude across all thresholds, except for some tendency to under-forecast for the largest event group on day 3. Some issues associated with categorical statistics to be aware of are also demonstrated and discussed.


2021 ◽  
Author(s):  
Nikolaos Skliris ◽  
Robert Marsh ◽  
Ivan D. Haigh ◽  
Melissa Wood ◽  
Joel Hirschi ◽  
...  

Abstract Observational rain gauge/satellite and reanalysis datasets since the 1950s are evaluated for trends in mean and extreme rainfall over Mainland Southeast Asia (MSEA). Rain gauge data indicate strong increases exceeding 50% in both annual mean precipitation and various extreme precipitation indices over Vietnam and the northwestern part of the peninsula since 1979. Increasing precipitation in MSEA is associated with increased monsoon intensity in southeast Asia and a northward shift of the monsoon activity centre towards MSEA over 1979-2018. Re-analysis data reveal warming-driven increases in evaporation over the seas adjacent to MSEA, including the main oceanic source regions feeding precipitation over the peninsula - the Arabian Sea, the Bay of Bengal, and the South China Sea. Furthermore, moisture budget analysis based on the ERA5 re-analysis also showed increasing oceanic moisture transport along the typical winter and summer moisture pathways towards the MSEA. However, the majority of the increased moisture from these oceanic sources ends up as summer precipitation over the oceanic regions adjacent to the MSEA. In contrast, the ERA5 data do reveal pronounced increases in winter precipitation over the MSEA, in accordance with rain-gauge data, that are associated with increased transport of moisture that originated from the western tropical Pacific and the South China Sea. Long-term amplification of the regional hydrological cycle is further investigated, through analysis of CMIP5 coupled climate models in historical and RCP4.5/8.5 21st century scenario simulations. The CMIP5 ensemble mean shows robust wide-spread trends in wet season precipitation with increasing frequency and intensity of extreme precipitation events over the MSEA, following strong increases in evaporation in the oceanic moisture sources.


Author(s):  
Sheetal Mali

Abstract: The tipping bucket system consists of funnel which collects the water of the rain in a container which is like a seesaw type module which tips side by side and collects the water. When the level of the water decreases below a preset level, the lever changes its side, causing the collected water to dump in a vessel and electrical signal is sent. By this system the high, medium or heavy rainfall character can be obtained. The rainfall character is calculated by the rainfall in 1 hour and corresponding number of pulses clicking in a period of 10 minutes. Various types of tipping bucket systems are reviewed by using rainfall and snow precipitation, using internet enabling, using rain drop imaging and artificial intelligence and also using wireless sensor network and GSM data transmission. Tipping Bucket is the most useful parameter for measuring the rainfall. In this way the rainfall is measured using the Tipping Bucket Rain Gauge System.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2376
Author(s):  
Khalid A. Hussein ◽  
Tareefa S. Alsumaiti ◽  
Dawit T. Ghebreyesus ◽  
Hatim O. Sharif ◽  
Waleed Abdalati

Current water demands are adequately satisfied in the United Arab Emirates (UAE) with the available water resources. However, the changing climate and growing water demand pose a great challenge for water resources managers in the country. Hence, there is a great need for management strategies and policies to use the most accurate information regarding water availability. Understanding the frequency and the short- and long-term trends of the precipitation by employing high-resolution data in both the spatial and temporal domains can provide invaluable information. This study examines the long-term precipitation trends over the UAE using 17 years of data from three of the most highly cited satellite-based precipitation products and rain gauge data observed at 18 stations. The UAE received, on average, 42, 51, and 120 wet hours in a year in the 21st century as recorded by CMORPH, PERSIANN, and IMERG, respectively. The results show that the areal average annual precipitation of the UAE is significantly lower in the early 21st century than that of the late 20th century, even though it shows an increasing trend by all the products. The Mann–Kendall trend test showed positive trends in six rain gauge stations and negative trends in two stations out of 18 stations, all of which are located in the wetter eastern part of the UAE. Results indicate that satellite products have great potential for improving the spatial aspects of rainfall frequency analysis and can complement rain gauge data to develop rainfall intensity–duration–frequency curves in a very dry region, where the installation of dense rain gauge networks is not feasible.


2021 ◽  
Author(s):  
Francesco Marra ◽  
Moshe Armon ◽  
Efrat Morin

Abstract. The yearly exceedance probability of extreme precipitation of multiple durations is crucial for infrastructure design, risk management and policymaking. Local extremes emerge from the interaction of weather systems with local terrain features such as coastlines and orography, however multi-duration extremes do not follow exactly the patterns of cumulative precipitation and are still not well understood. High-resolution information from weather radars could help us better quantifying their patterns, but traditional extreme-value analyses based on radar records were found too inaccurate for quantifying the extreme intensities for impact studies. Here, we propose a novel methodology for extreme precipitation frequency analysis based on relatively short weather radar records, and we use it to investigate coastal and orographic effects on extreme precipitation of durations between 10 minutes and 24 hours. Combining 11 years of radar data with 10-minute rain gauge data in the southeastern Mediterranean, we obtain estimates of the 1 in 100 years intensities with ~22 % standard error, which is lower than those obtained using traditional approaches on rain gauge data. We identify three distinct regimes, which respond differently to coastal and orographic forcing: short durations (~10 minutes), related to peak convective rain rates; hourly durations (~1 hours), related to the yield of individual convective cells; and long durations (~6–24 hours), related to the accumulation of multiple convective cells and to stratiform processes. At short and hourly durations, extreme return levels peak at the coastline, while at longer durations they peak corresponding to the orographic barriers. The distributions tail heaviness is rather uniform above the sea and rapidly changes in presence of orography, with opposing directions at short (decreasing tail heaviness, with a peak at hourly durations) and long (increasing) durations. These distinct effects suggest that short-scale hazards such as urban pluvial floods could be more of concern for the coastal regions, while longer-scale hazards such as flash floods could be more relevant in mountainous areas.


Author(s):  
Novi Rahmawati ◽  
Kisworo Rahayu ◽  
Sukma Tri Yuliasari

AbstractEvaluation of the performance of daily satellite-based rainfall (CMORPH, CHIRPS, GPM IMERG, and TRMM) was done to obtain applicable satellite rainfall estimates in the groundwater basin of the Merapi Aquifer System (MAS). Performance of satellite data was assessed by applying descriptive statistics, categorical statistics, and bias decomposition on the basis of daily rainfall intensity classification. This classification is possible to measure the performance of daily satellite-based rainfall in much detail. CM (CMORPH) has larger underestimation compared to other satellite-based rainfall assessments. This satellite-based rainfall also mostly has the largest RMSE, while CHR (CHIRPS) has the lowest. CM has a good performance to detect no rain, while IMR (GPM IMERG) has the worst performance. IMR and CHR have a good performance to detect light and moderate rain. Both of them have larger H frequencies and lower MB values compared to other satellite products. CHR mostly has a good performance compared to TR (TRMM), especially on wet periods. CM, IMR, and TR mostly have a good performance on dry periods, while CHR on wet periods. CM mostly has the largest MB and lowest AHB values. CM and CHR have better accuracy to estimate rain amount compared to IMR and TR. All in all, all 4 satellite-based rainfall assessments have large discrepancy compared with rain gauge data along mountain range where orographic rainfall usually occurs in wet periods. Hence, it is recommended to evaluate satellite-based rainfall with time series of streamflow simulation in hydrological modeling framework by merging rain gauge data with more than one satellite-based rainfall than to merge both IMR and TR together.


2021 ◽  
Author(s):  
Rasmus Benestad ◽  
Julia Lutz ◽  
Anita Verpe Dyrrdal ◽  
Jan Erik Haugen ◽  
Kajsa M. Parding ◽  
...  

<p>A simple formula for estimating approximate values of return levels for sub-daily rainfall is presented. It was derived from a combination of simple mathematical principles, approximations and fitted to 10-year return levels taken from intensity-duration-frequency (IDF) curves representing 14 sites in Oslo. The formula has subsequently been evaluated against IDF curves from independent sites elsewhere in Norway. Since it only needs 24 h rain gauge data as input, it can provide approximate estimates for the IDF curves used to describe sub-daily rainfall return levels. In this respect, it can be considered as a means of downscaling regarding the timescale, given an approximate power-law dependency between temporal scales. One clear benefit of this framework is that observational data is far more abundant for 24 hr rain gauge records than for sub-daily measurements. Furthermore, it does not assume stationarity and is well-suited for projecting IDF curves for a future climate. This method also provides a framework that strengthens the connection between climatology and meteorology to hydrology, and can be applied to risk management in terms of flash flooding. The proposed formula can also serve as a 'yardstick' to study how different meteorological phenomena with different timescales influence the local precipitation, such as convection, weather fronts, cyclones, atmospheric rivers, or orographic rainfall. An interesting question is whether the slopes of the IDF curves change as a consequence of climate change and if it is possible to predict how they change. One way to address this question is to apply the framework to simulations by convective-permitting regional climate models that offer a complete representation of both sub-daily and daily precipitation over time and space. </p>


2021 ◽  
Author(s):  
Novi Rahmawati ◽  
Kisworo Rahayu ◽  
Sukma Tri Yuliasari

Abstract Evaluation of the performance of daily satellite-based rainfall (CMORPH, CHIRPS, GPM IMERG, and TRMM) was done to obtain applicable satellite rainfall estimates in groundwater basin of Merapi Aquifer System (MAS). Performance of satellite data was assessed by applying descriptive statistics, categorical statistics, and bias decomposition on the basis of daily rainfall intensity classification. This classification is possible to measure the performance of daily satellite-based rainfall in much detail.CM (CMORPH) has larger underestimation compared to other satellite-based rainfall. This satellite-based rainfall also mostly has the largest RMSE, while CHR (CHIRPS) is the lowest. CM has a good performance to detect no rain, while IMR (GPM-IMERG) has the worst performance. IMR and CHR have a good performance to detect light and moderate rain. Both of them have larger H frequencies and lower MB values compared to other satellite products. CHR mostly has a good performance compared to TR (TRMM) especially on wet periods. CM, IMR, and TR mostly have a good performance on dry periods, while CHR on wet periods. CM mostly has the largest MB and lowest AHB values. CM and CHR have better accuracy to estimate rain amount compared to IMR and TR. All in all, all 4 satellite-based rainfall has large discrepancy compared with rain gauge data along mountain range where orographic rainfall usually occurs in wet periods. Hence, it is recommended to evaluate satellite-based rainfall with time series of streamflow simulation in hydrological modeling framework by merging rain gauge data with more than one satellite-based rainfall except to merge both IMR and TR together.


2021 ◽  
Vol 13 (11) ◽  
pp. 2217
Author(s):  
Wenyue Wang ◽  
Klemens Hocke ◽  
Christian Mätzler

Because of its clear physical meaning, physical methods are more often used for space-borne microwave radiometers to retrieve the rain rate, but they are rarely used for ground-based microwave radiometers that are very sensitive to rainfall. In this article, an opacity physical retrieval method is implemented to retrieve the rain rate (denoted as Opa-RR) using ground-based microwave radiometer data (21.4 and 31.5 GHz) of the tropospheric water radiometer (TROWARA) at Bern, Switzerland from 2005 to 2019. The Opa-RR firstly establishes a direct connection between the rain rate and the enhanced atmospheric opacity during rain, then iteratively adjusts the rain effective temperature to determine the rain opacity, based on the radiative transfer equation, and finally estimates the rain rate. These estimations are compared with the available simultaneous rain rate derived from rain gauge data and reanalysis data (ERA5). The results and the intercomparison demonstrate that during moderate rains and at the 31 GHz channel, the Opa-RR method was close to the actual situation and capable of the rain rate estimation. In addition, the Opa-RR method can well derive the changes in cumulative rain over time (day, month, and year), and the monthly rain rate estimation is superior, with the rain gauge validated R2 and the root-mean-square error value of 0.77 and 22.46 mm/month, respectively. Compared with ERA5, Opa-RR at 31GHz achieves a competitive performance.


Sign in / Sign up

Export Citation Format

Share Document