scholarly journals A scaling approach, predicting the continuous form of soil moisture characteristics curve, from soil particle size distribution and bulk density data

2013 ◽  
Vol 10 (11) ◽  
pp. 14305-14329 ◽  
Author(s):  
F. Meskini-Vishkaee ◽  
M. H. Mohammadi ◽  
M. Vanclooster

Abstract. A substantial number of models, predicting the Soil Moisture Characteristic Curve (SMC) from Particle Size Distribution (PSD) data, underestimate the dry range of the SMC especially in soils with high clay and organic matter contents. In this study, we applied a continuous form of the PSD model to predict the SMC and subsequently, we developed a physically based scaling approach to reduce the model's bias at the dry range of the SMC. The soil particles packing parameter, obtained from the porosity was considered as a characteristic length. The model was tested by using eighty-two soil samples, selected from the UNSODA database. The result showed that the scaling approach properly estimate the SMC for all soil samples. In comparison to the formerly used physically based SMC model, the proposed approach improved the model estimations by an average of 30% for all soil samples. However, the advantage of this new approach was larger for the fine and medium textured soils than that for the coarse textured soil. In view that in this approach there is no further need for empirical parameters, we conclude that this approach could become applicable for estimating SMC at the larger field scale.

2014 ◽  
Vol 18 (10) ◽  
pp. 4053-4063 ◽  
Author(s):  
F. Meskini-Vishkaee ◽  
M. H. Mohammadi ◽  
M. Vanclooster

Abstract. A substantial number of models predicting the soil moisture characteristic curve (SMC) from particle size distribution (PSD) data underestimate the dry range of the SMC especially in soils with high clay and organic matter contents. In this study, we applied a continuous form of the PSD model to predict the SMC, and subsequently we developed a physically based scaling approach to reduce the model's bias at the dry range of the SMC. The soil particle packing density was considered as a metric of soil structure and used to define a soil particle packing scaling factor. This factor was subsequently integrated in the conceptual SMC prediction model. The model was tested on 82 soils, selected from the UNSODA database. The results show that the scaling approach properly estimates the SMC for all soil samples. In comparison to the original conceptual SMC model without scaling, the scaling approach improves the model estimations on average by 30%. Improvements were particularly significant for the fine- and medium-textured soils. Since the scaling approach is parsimonious and does not rely on additional empirical parameters, we conclude that this approach may be used for estimating SMC at the larger field scale from basic soil data.


2015 ◽  
Vol 70 (3) ◽  
pp. 193-198 ◽  
Author(s):  
S. Müller ◽  
D. Schaub

Abstract. An important factor in the release of phosphorus by soil erosion, with corresponding consequences on the quality of surface waters, is the formation of aggregates and their stability. Around the eutrophic Lake Hallwil six arable lands were examined in five repetitions regarding aggregate and particle size distribution, P-contents of the different fractions and aggregate stability. Central to this was the use of the setting column for fractionation of soil samples. In the case of Lake Hallwil the risk of phosphorus discharges by soil erosion seems low since the phosphorus is mainly bound in aggregates which are transported over short distances only. Thus other pathways (runoff from grassland, leaching via drains) may be more important.


Sign in / Sign up

Export Citation Format

Share Document