scholarly journals Polymer tensiometers with ceramic cones: performance in drying soils and comparison with water-filled tensiometers and time domain reflectometry

2009 ◽  
Vol 6 (3) ◽  
pp. 4349-4377 ◽  
Author(s):  
M. J. van der Ploeg ◽  
H. P. A. Gooren ◽  
G. Bakker ◽  
C. W. Hoogendam ◽  
C. Huiskes ◽  
...  

Abstract. Measuring soil water potentials is crucial to characterize vadose zone processes. Water-filled tensiometers only measure until approximately −0.085 MPa, and indirect methods may suffer from the non-uniqueness in the relationship between matric potential and measured properties. Recently developed polymer tensiometers (POTs) are able to directly measure soil matric potentials until the theoretical wilting point (−1.6 MPa). By minimizing the volume of polymer solution inside the POT while maximizing the ceramic area in contact with that polymer solution, response times drop to acceptable ranges for laboratory and field conditions. Contact with the soil is drastically improved with the use of a cone-shaped solid ceramics instead of flat ceramics. The comparison between measured potentials by polymer tensiometers and indirectly obtained potentials with time domain reflectometry highlights the risk of using the latter method at low water contents. By combining POT and time domain reflectometry readings in situ moisture retention curves can be measured over the range permitted by time domain reflectometry.

2010 ◽  
Vol 14 (10) ◽  
pp. 1787-1799 ◽  
Author(s):  
M. J. van der Ploeg ◽  
H. P. A. Gooren ◽  
G. Bakker ◽  
C. W. Hoogendam ◽  
C. Huiskes ◽  
...  

Abstract. Measuring soil water potentials is crucial to characterize vadose zone processes. Conventional tensiometers only measure until approximately −0.09 MPa, and indirect methods may suffer from the non-uniqueness in the relationship between matric potential and measured properties. Recently developed polymer tensiometers (POTs) are able to directly measure soil matric potentials until the theoretical wilting point (−1.6 MPa). By minimizing the volume of polymer solution inside the POT while maximizing the ceramic area in contact with that polymer solution, response times drop to acceptable ranges for laboratory and field conditions. Contact with the soil is drastically improved with the use of cone-shaped solid ceramics instead of flat ceramics. The comparison between measured potentials by polymer tensiometers and indirectly obtained potentials with time domain reflectometry highlights the risk of using the latter method at low water contents. By combining POT and time domain reflectometry readings in situ moisture retention curves can be measured over the range permitted by the measurement range of both POT and time domain reflectometry.


Soil Research ◽  
2013 ◽  
Vol 51 (4) ◽  
pp. 330 ◽  
Author(s):  
George Kargas ◽  
Nikolaos Ntoulas ◽  
Panayiotis A. Nektarios

Newly developed sensors have simplified real-time determination of soil water content (θm). Although the TDR300 is one of the most recent dielectric sensors, little is known with regard to the accuracy and dependency of its measurements of soil type and other environmental factors. In this study, the performance of TDR300 was investigated using liquids of known dielectric properties and a set of porous media with textures ranging from sandy to clayey. The experiments were conducted in the laboratory by mixing different amounts of water with each soil to obtain a sufficient range of soil water contents. For sand, the calculated permittivity values (εr) correlated adequately with Topp’s equation derived for time domain reflectometry. However, for the remaining inorganic porous media, εr values were overestimated compared with those resulting from Topp’s equation, especially for water contents exceeding 0.2 cm3/cm3. The results suggested that the relationship between θm and √εr was strongly linear (0.953< r2 <0.998). The most accurate results were provided by soil-specific calibration equations, which were obtained by the multi-point calibration equation. However, two-point calibration equations determined water content in all tested soils reasonably well, except for clay soil. A linear regression equation was developed that correlated the slope of the relationship θm–√εr with bulk soil electrical conductivity (EC). The regression slope was influenced more by soil EC than by soil texture. Also, TDR300 response was investigated in bi-layered systems (liquid–air and saturated porous media–air). In a bi-layered sensing volume characterised by strongly contrasting dielectric values, the appropriate bulk permittivity values for water and loam soil were determined by arithmetic rather than refractive index averaging, while for butanol and sand these values remained somewhere between the two averaging schemes, indicating that the upward infiltration calibration technique is inappropriate for the TDR300 sensor. Soil solute EC, as determined by measurements conducted in liquids and sand, significantly affected permittivity values at much lower levels than the limit of EC <2 dS/m, as suggested by the manufacturer. However, the relationship θm–√εr remained linear up to EC 2 dS/m, which corresponded to a bulk soil EC value of 0.6 dS/m. By contrast, for EC values >2 dS/m, the relationship θm–√εr was not linear, and, thus the TDR300 device calibration became increasingly difficult. Therefore, rather than operating as a time domain device, TDR300 operates as a water content reflectometer type device.


Soil Research ◽  
2001 ◽  
Vol 39 (6) ◽  
pp. 1359 ◽  
Author(s):  
I. Vogeler ◽  
S. Green ◽  
A. Nadler ◽  
C. Duwig

Time domain reflectometry (TDR) was used to monitor the transport of conservative tracers in the field under transient water flow in a controlled experiment under a kiwifruit vine. A mixed pulse of chloride and bromide was applied to the soil surface of a 16 m2 plot that had been isolated from the surrounding orchard soil. The movement of this solute pulse was monitored by TDR. A total of 63 TDR probes were installed into the plot for daily measurements of both the volumetric water content (θ) and the bulk soil electrical conductivity (σa). These TDR-measured σa were converted into pore water electrical conductivities (σw) and solute concentrations using various θ–σa–σw relationships that were established in the laboratory on repacked soil. The depth-wise field TDR measurements were compared with destructive measurement of the solute concentrations at the end of the experiment. These results were also compared with predictions using a deterministic model of water and solute transport based on Richards’ equation, and the convection–dispersion equation. TDR was found to give a good indication of the shape of the solute profile with depth, but the concentration of solute was under- or over-estimated by up to 50%, depending on the θ–σa–σw relationships used. Thus TDR can be used to monitor in situ transport of contaminants. However, only rough estimates of the electrical conductivity of the soil solution can so far be obtained by TDR.


2018 ◽  
Vol 23 (4) ◽  
pp. 437-442
Author(s):  
Raffaele Persico ◽  
Iman Farhat ◽  
Lourdes Farrugia ◽  
Sebastiano D'Amico ◽  
Charles Sammut

In this paper we propose a study regarding some possibilities that can be offered by a time domain reflectometry (TDR) probe in retrieving both dielectric and magnetic properties of materials. This technique can be of interest for several applications, among which the characterization of soil in some situations. In particular, here we propose an extension of the paper “Retrieving electric and magnetic propetries of the soil in situ: New possibilities”, presented at the IWAGPR, held in Edinburgh in 2017, and as a new contribution we will validate a transmission line model with numerical data simulated by the CST code.


2020 ◽  
Vol 84 (5) ◽  
pp. 1354-1360
Author(s):  
Yili Lu ◽  
Xiaona Liu ◽  
Meng Zhang ◽  
Joshua Heitman ◽  
Robert Horton ◽  
...  

2019 ◽  
Vol 23 (6) ◽  
pp. 2615-2635 ◽  
Author(s):  
Brigitta Szabó ◽  
Gábor Szatmári ◽  
Katalin Takács ◽  
Annamária Laborczi ◽  
András Makó ◽  
...  

Abstract. Spatial 3-D information on soil hydraulic properties for areas larger than plot scale is usually derived using indirect methods such as pedotransfer functions (PTFs) due to the lack of measured information on them. PTFs describe the relationship between the desired soil hydraulic parameter and easily available soil properties based on a soil hydraulic reference dataset. Soil hydraulic properties of a catchment or region can be calculated by applying PTFs on available soil maps. Our aim was to analyse the performance of (i) indirect (using PTFs) and (ii) direct (geostatistical) mapping methods to derive 3-D soil hydraulic properties. The study was performed on the Balaton catchment area in Hungary, where density of measured soil hydraulic data fulfils the requirements of geostatistical methods. Maps of saturated water content (0 cm matric potential), field capacity (−330 cm matric potential) and wilting point (−15 000 cm matric potential) for 0–30, 30–60 and 60–90 cm soil depth were prepared. PTFs were derived using the random forest method on the whole Hungarian soil hydraulic dataset, which includes soil chemical, physical, taxonomical and hydraulic properties of some 12 000 samples complemented with information on topography, climate, parent material, vegetation and land use. As a direct and thus geostatistical method, random forest combined with kriging (RFK) was applied to 359 soil profiles located in the Balaton catchment area. There were no significant differences between the direct and indirect methods in six out of nine maps having root-mean-square-error values between 0.052 and 0.074 cm3 cm−3, which is in accordance with the internationally accepted performance of hydraulic PTFs. The PTF-based mapping method performed significantly better than the RFK for the saturated water content at 30–60 and 60–90 cm soil depth; in the case of wilting point the RFK outperformed the PTFs at 60–90 cm depth. Differences between the PTF-based and RFK mapped values are less than 0.025 cm3 cm−3 for 65 %–86  % of the catchment. In RFK, the uncertainty of input environmental covariate layers is less influential on the mapped values, which is preferable. In the PTF-based method the uncertainty of mapping soil hydraulic properties is less computationally intensive. Detailed comparisons of maps derived from the PTF-based method and the RFK are presented in this paper.


2017 ◽  
Vol 2 (1) ◽  
pp. 0 ◽  
Author(s):  
Yili Lu ◽  
Xiaona Liu ◽  
Meng Zhang ◽  
Joshua Heitman ◽  
Robert Horton ◽  
...  

2005 ◽  
Vol 42 (1) ◽  
pp. 279-286 ◽  
Author(s):  
Anushka Shibchurn ◽  
Paul J Van Geel ◽  
Paula L Kennedy

The hydraulic properties of a peat used in a commercial peat biofilter were evaluated to determine their relationship with density and to establish a time domain reflectometry (TDR) calibration curve for water content as a function of the measured dielectric constant. The peat studied was a milled Sphagnum peat with a high organic content (99%). The dry densities evaluated in this study ranged from 90 to 180 kg/m3. The saturated hydraulic conductivity (Ks) decreased with an increase in dry density (ρdry) and was found to follow a log-linear relationship (Ks = 0.2462 exp(–0.0438ρdry), correlation coefficient R2 = 0.9789). As expected, the soil moisture curve was impacted by density, with a higher density resulting in higher water contents for a given suction. The data were fit to the van Genuchten relationship. A TDR calibration curve was generated at five different densities. A comparison of the curves indicates that the water content as a function of dielectric constant was not dependent on density because of the significantly larger dielectric constant (Ka) of water compared with those of peat solids and air-filled voids. The TDR calibration curve for the peat evaluated in this study (volumetric water content Θv = 0.2667 ln(Ka) – 0.1405, R2 = 0.9564) predicted higher water contents for a given dielectric constant compared with those from similar calibration curves for peat published in the literature. The data were compared with those from six other studies and indicated that the TDR calibration varied for different organic soils. The density-dependent hydraulic parameters and TDR calibration curve are important parameters needed to study the hydraulics of peat biofilters.Key words: peat, TDR, time domain reflectometry, density, hydraulics, soil moisture.


Sign in / Sign up

Export Citation Format

Share Document