scholarly journals Towards reconstruction of the flow duration curve: development of a conceptual framework with a physical basis

2011 ◽  
Vol 8 (2) ◽  
pp. 3961-3992 ◽  
Author(s):  
Y. Yokoo ◽  
M. Sivapalan

Abstract. In this paper we investigate the climatic and landscape controls on the flow duration curve (FDC) with the use of a physically-based rainfall-runoff model. The FDC is a stochastic representation of within-year variability of runoff, which arises from the transformation, by the catchment, of within-year variability of precipitation that can itself be characterized by a corresponding duration curve for precipitation (PFDC). Numerical simulations are carried out with the rainfall-runoff model under a variety of combinations of climatic inputs (i.e., precipitation, potential evaporation, including their within-year variability) and landscape properties (i.e., soil type and depth). The simulations indicated that the FDC can be disaggregated into two components, with sharply differing characteristics and origins: the FDC for surface (fast) runoff (SFDC) and the FDC for subsurface (slow) runoff (SSFDC). SFDC closely tracked PFDC and can be approximated with the use of a simple, nonlinear (threshold) filter model. On the other hand, SSFDC tracked the FDC that is constructed from the regime curve (ensemble mean within-year variation of streamflow), which can be closely approximated by a linear filter model. Sensitivity analyses were carried out to understand the climate and landscape controls on each component, gaining useful physical insights into their respective shapes. In particular the results suggested that evaporation from dynamic saturated areas, especially in the dry season, can contribute to a sharp dip at the lower tail of the FDCs. Based on these results, we develop a conceptual framework for the reconstruction of FDCs in ungauged basins. This framework partitions the FDC into: (1) a fast flow component, governed by a filtered version of PFDC, (2) a slow flow component governed by the regime curve, and (3) a correction to SSFDC to capture the effects of high evapotranspiration at low flows.

2011 ◽  
Vol 15 (9) ◽  
pp. 2805-2819 ◽  
Author(s):  
Y. Yokoo ◽  
M. Sivapalan

Abstract. In this paper we investigate the climatic and landscape controls on the flow duration curve (FDC) with the use of a physically-based rainfall-runoff model. The FDC is a stochastic representation of the variability of runoff, which arises from the transformation, by the catchment, of within-year variability of precipitation that can itself be characterized by a corresponding duration curve for precipitation (PDC). Numerical simulations are carried out with the rainfall-runoff model under a variety of combinations of climatic inputs (i.e. precipitation, potential evaporation, including their within-year variability) and landscape properties (i.e. soil type and depth). The simulations indicated that the FDC can be disaggregated into two components, with sharply differing characteristics and origins: the FDC for surface (fast) runoff (SFDC) and the FDC for subsurface (slow) runoff (SSFDC), which included base flow in our analysis. SFDC closely tracked PDC and can be approximated with the use of a simple, nonlinear (threshold) filter model. On the other hand, SSFDC tracked the FDC that is constructed from the regime curve (i.e. mean monthly runoff), which can be closely approximated by a linear filter model. Sensitivity analyses were carried out to understand the climate and landscape controls on each component, gaining useful physical insights into their respective shapes. In particular the results suggested that evaporation from dynamic saturated areas, especially in the dry season, can contribute to a sharp dip at the lower tail of the FDCs. Based on these results, we develop a conceptual framework for the reconstruction of FDCs in ungauged basins. This framework partitions the FDC into: (1) a fast flow component, governed by a filtered version of PDC, (2) a slow flow component governed by the regime curve, and (3) a correction to SSFDC to capture the effects of high evapotranspiration (ET) at low flows.


2016 ◽  
Vol 845 ◽  
pp. 24-29 ◽  
Author(s):  
Hadiani Rintis ◽  
Suyanto ◽  
Yosephina Puspa Setyoasri

Rainfall-discharge simulation is a process transformation from rainfall to discharge in a catchment area by modelling. The most popular models are Mock method and NRECA method. It is according to the handbook of irrigation that is written by government (Indonesia). GR2M (Global Rainfall-Runoff Model) is a new model that is not usual to be used in Indonesia. GR2M is a simulation model that needs less parameter than Mock and NRECA methods. This research was conducted in the Bah Bolon catchment area, Simalungun, North Sumatra. It will analyze the simulation of rainfall-discharge by three methods, Mock, NRECA, and GR2M without considering whether the watershed was wet or dry watershed. The analysis was computed the dependable discharge by flow duration curve (fdc) in a series data on each method. The parameter that compared was the dependable discharge, i.e. the discharge with probability 70% (Q70), probability 80% (Q80), and probability 90% (Q90). GR2M will compared with Mock, then compared with NRECA. The results show that the discharge simulation by GR2M methods and the discharge simulation by Mock method has correlation 0.968. The discharge simulation by GR2M method and the discharge simulation by NRECA method has correlation 0,955. It means that GR2M close to the both of them, but GR2M can used easily because it has less parameter than the other. Based on the graphic, GR2M close to the Mock method for probability more than 50%. So, if the probability is 70%, 80%, and 90%, then GR2M method close to Mock method.


2013 ◽  
Vol 68 (10) ◽  
pp. 2136-2143 ◽  
Author(s):  
Luca Vezzaro ◽  
Peter Steen Mikkelsen ◽  
Ana Deletic ◽  
David McCarthy

There is increasing awareness about uncertainties in the modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here, a modified Monte-Carlo based method is presented that reduces the subjectivity inherent in typical uncertainty approaches (e.g. cut-off thresholds), while using tangible concepts and providing practical outcomes for practitioners. The method compares the model's uncertainty bands to the uncertainty inherent in each measured/observed datapoint; an issue that is commonly overlooked in the uncertainty analysis of urban drainage models. This comparison allows the user to intuitively estimate the optimum number of simulations required to conduct uncertainty analyses. The output of the method includes parameter probability distributions (often used for sensitivity analyses) and prediction intervals. To demonstrate the new method, it is applied to a conceptual rainfall-runoff model (MOPUS) using a dataset collected from Melbourne, Australia.


Author(s):  
Hiroki Momiyama ◽  
Tomo'omi Kumagai ◽  
Tomohiro Egusa

In Japan, there has recently been an increasing call for forest thinning to conserve water resources from forested mountain catchments in terms of runoff during prolonged drought periods of the year. How their water balance and the resultant runoff are altered by forest thinning is examined using a combination of 8-year hydrological observations, 100-year meteorological data generator output, and a semi-process-based rainfall-runoff model. The rainfall-runoff model is developed based on TOPMODEL assuming that forest thinning has an impact on runoff primarily through an alteration in canopy interception. The main novelty in this analysis is that the availability of the generated 100-year meteorological data allows the investigations of the forest thinning impacts on mountain catchment water resources under the most severer drought conditions. The model is validated against runoff observations conducted at a forested mountain catchment in the Kanto region of Japan for the period 2010–2017. It is demonstrated that the model reproduces temporal variations in runoff and evapotranspiration at inter- and intra-annual time scales, resulting in well reproducing the observed flow duration curves. On the basis of projected flow duration curves for the 100-year, despite the large increase in an annual total runoff with ordinary intensifying thinning, low flow rates, i.e., water resources from the catchment in the drought period in the year, in both normal and drought years were impacted by the forest thinning to a lesser extent. Higher catchment water retention capacity appreciably enhanced the forest thinning effect on increasing available water resources.


2008 ◽  
Vol 35 (9) ◽  
pp. 999-1008 ◽  
Author(s):  
Claudio J.C. Blanco ◽  
Yves Secretan ◽  
Anne-Catherine Favre

In Amazonia, because the small catchments are ungauged, it is not possible to analyse them, for example, for hydroelectric power production. Thus, the objective of this paper is to study the transferability of a rainfall–runoff model to simulate flow duration curves for the production of hydroelectric power. The approach is based on the transfer of the impulse response of a model calibrated on two gauged catchments, allowing the evaluation approach permutation between these two catchments. We have, respectively, 7 years and 2 years and 2 months of rainfall and runoff data for these catchments. A sensitivity analysis of the transferability calibration to the sample size is carried out to determine the shortest flow period gauged on the receptor catchment, which produces results comparable to those calibrated with the maximum samples size. This analysis evaluates fieldwork on the ungauged sites of the region.


Sign in / Sign up

Export Citation Format

Share Document