scholarly journals An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios

2011 ◽  
Vol 8 (1) ◽  
pp. 715-761 ◽  
Author(s):  
N. Addor ◽  
S. Jaun ◽  
M. Zappa

Abstract. The Sihl River flows through Zurich, Switzerland's most populated city, for which it represents the largest flood threat. To anticipate extreme discharge events and provide decision support in case of flood risk, a hydrometeorological ensemble prediction system (HEPS) was launched operationally in 2008. This models chain relies on limited-area atmospheric forecasts provided by the deterministic model COSMO-7 and the probabilistic model COSMO-LEPS. These atmospheric forecasts are used to force a semi-distributed hydrological model (PREVAH), coupled to a hydraulic model (FLORIS). The resulting hydrological forecasts are eventually communicated to the stakeholders involved in the Sihl discharge management. This fully operational setting provides a real framework to compare the potential of deterministic and probabilistic discharge forecasts for flood mitigation. To study the suitability of HEPS for small-scale basins and to quantify the added-value conveyed by the probability information, a reforecast was made for the period June 2007 to December 2009 for the Sihl catchment (336 km2). Several metrics support the conclusion that the performance gain can be of up to 2 days lead time for the catchment considered. Brier skill scores show that COSMO-LEPS-based hydrological forecasts overall outperform their COSMO–7 based counterparts for all the lead times and event intensities considered. The small size of the Sihl catchment does not prevent skillful discharge forecasts, but makes them particularly dependent on correct precipitation forecasts, as shown by comparisons with a reference run driven by observed meteorological parameters. Our evaluation stresses that the capacity of the model to provide confident and reliable mid-term probability forecasts for high discharges is limited. The two most intense events of the study period are investigated utilising a novel graphical representation of probability forecasts and used to generate high discharge scenarios. They highlight challenges for making decisions on the basis of hydrological predictions, and indicate the need for a tool to be used in addition to forecasts to compare the different mitigation actions possible in the Sihl catchment.

2011 ◽  
Vol 15 (7) ◽  
pp. 2327-2347 ◽  
Author(s):  
N. Addor ◽  
S. Jaun ◽  
F. Fundel ◽  
M. Zappa

Abstract. The Sihl River flows through Zurich, Switzerland's most populated city, for which it represents the largest flood threat. To anticipate extreme discharge events and provide decision support in case of flood risk, a hydrometeorological ensemble prediction system (HEPS) was launched operationally in 2008. This model chain relies on limited-area atmospheric forecasts provided by the deterministic model COSMO-7 and the probabilistic model COSMO-LEPS. These atmospheric forecasts are used to force a semi-distributed hydrological model (PREVAH), coupled to a hydraulic model (FLORIS). The resulting hydrological forecasts are eventually communicated to the stakeholders involved in the Sihl discharge management. This fully operational setting provides a real framework with which to compare the potential of deterministic and probabilistic discharge forecasts for flood mitigation. To study the suitability of HEPS for small-scale basins and to quantify the added-value conveyed by the probability information, a reforecast was made for the period June 2007 to December 2009 for the Sihl catchment (336 km2). Several metrics support the conclusion that the performance gain can be of up to 2 days lead time for the catchment considered. Brier skill scores show that overall COSMO-LEPS-based hydrological forecasts outperforms their COSMO-7-based counterparts for all the lead times and event intensities considered. The small size of the Sihl catchment does not prevent skillful discharge forecasts, but makes them particularly dependent on correct precipitation forecasts, as shown by comparisons with a reference run driven by observed meteorological parameters. Our evaluation stresses that the capacity of the model to provide confident and reliable mid-term probability forecasts for high discharges is limited. The two most intense events of the study period are investigated utilising a novel graphical representation of probability forecasts, and are used to generate high discharge scenarios. They highlight challenges for making decisions on the basis of hydrological predictions, and indicate the need for a tool to be used in addition to forecasts to compare the different mitigation actions possible in the Sihl catchment. No definitive conclusion on the model chain capacity to forecast flooding events endangering the city of Zurich could be drawn because of the under-sampling of extreme events. Further research on the form of the reforecasts needed to infer on floods associated to return periods of several decades, centuries, is encouraged.


2014 ◽  
Vol 142 (5) ◽  
pp. 2043-2059 ◽  
Author(s):  
Yong Wang ◽  
Martin Bellus ◽  
Jean-Francois Geleyn ◽  
Xulin Ma ◽  
Weihong Tian ◽  
...  

Abstract A blending method for generating initial condition (IC) perturbations in a regional ensemble prediction system is proposed. The blending is to combine the large-scale IC perturbations from a global ensemble prediction system (EPS) with the small-scale IC perturbations from a regional EPS by using a digital filter and the spectral analysis technique. The IC perturbations generated by blending can well represent both large-scale and small-scale uncertainties in the analysis, and are more consistent with the lateral boundary condition (LBC) perturbations provided by global EPS. The blending method is implemented in the regional ensemble system Aire Limitée Adaptation Dynamique Développement International-Limited Area Ensemble Forecasting (ALADIN-LAEF), in which the large-scale IC perturbations are provided by the European Centre for Medium-Range Weather Forecasts (ECMWF-EPS), and the small-scale IC perturbations are generated by breeding in ALADIN-LAEF. Blending is compared with dynamical downscaling and breeding over a 2-month period in summer 2007. The comparison clearly shows impact on the growth of forecast spread if the regional IC perturbations are not consistent with the perturbations coming through LBC provided by the global EPS. Blending can cure the problem largely, and it performs better than dynamical downscaling and breeding.


2019 ◽  
Vol 32 (3) ◽  
pp. 957-972 ◽  
Author(s):  
Takeshi Doi ◽  
Swadhin K. Behera ◽  
Toshio Yamagata

This paper explores merits of 100-ensemble simulations from a single dynamical seasonal prediction system by evaluating differences in skill scores between ensembles predictions with few (~10) and many (~100) ensemble members. A 100-ensemble retrospective seasonal forecast experiment for 1983–2015 is beyond current operational capability. Prediction of extremely strong ENSO and the Indian Ocean dipole (IOD) events is significantly improved in the larger ensemble. It indicates that the ensemble size of 10 members, used in some operational systems, is not adequate for the occurrence of 15% tails of extreme climate events, because only about 1 or 2 members (approximately 15% of 12) will agree with the observations. We also showed an ensemble size of about 50 members may be adequate for the extreme El Niño and positive IOD predictions at least in the present prediction system. Even if running a large-ensemble prediction system is quite costly, improved prediction of disastrous extreme events is useful for minimizing risks of possible human and economic losses.


2013 ◽  
Vol 17 (6) ◽  
pp. 2107-2120 ◽  
Author(s):  
S. Davolio ◽  
M. M. Miglietta ◽  
T. Diomede ◽  
C. Marsigli ◽  
A. Montani

Abstract. Numerical weather prediction models can be coupled with hydrological models to generate streamflow forecasts. Several ensemble approaches have been recently developed in order to take into account the different sources of errors and provide probabilistic forecasts feeding a flood forecasting system. Within this framework, the present study aims at comparing two high-resolution limited-area meteorological ensembles, covering short and medium range, obtained via different methodologies, but implemented with similar number of members, horizontal resolution (about 7 km), and driving global ensemble prediction system. The former is a multi-model ensemble, based on three mesoscale models (BOLAM, COSMO, and WRF), while the latter, following a single-model approach, is the operational ensemble forecasting system developed within the COSMO consortium, COSMO-LEPS (limited-area ensemble prediction system). The meteorological models are coupled with a distributed rainfall-runoff model (TOPKAPI) to simulate the discharge of the Reno River (northern Italy), for a recent severe weather episode affecting northern Apennines. The evaluation of the ensemble systems is performed both from a meteorological perspective over northern Italy and in terms of discharge prediction over the Reno River basin during two periods of heavy precipitation between 29 November and 2 December 2008. For each period, ensemble performance has been compared at two different forecast ranges. It is found that, for the intercomparison undertaken in this specific study, both mesoscale model ensembles outperform the global ensemble for application at basin scale. Horizontal resolution is found to play a relevant role in modulating the precipitation distribution. Moreover, the multi-model ensemble provides a better indication concerning the occurrence, intensity and timing of the two observed discharge peaks, with respect to COSMO-LEPS. This seems to be ascribable to the different behaviour of the involved meteorological models. Finally, a different behaviour comes out at different forecast ranges. For short ranges, the impact of boundary conditions is weaker and the spread can be mainly attributed to the different characteristics of the models. At longer forecast ranges, the similar behaviour of the multi-model members forced by the same large-scale conditions indicates that the systems are governed mainly by the boundary conditions, although the different limited area models' characteristics may still have a non-negligible impact.


2003 ◽  
Vol 10 (3) ◽  
pp. 261-274 ◽  
Author(s):  
A. Montani ◽  
C. Marsigli ◽  
F. Nerozzi ◽  
T. Paccagnella ◽  
S. Tibaldi ◽  
...  

Abstract. The predictability of the flood event affecting Soverato (Southern Italy) in September 2000 is investigated by considering three different configurations of ECMWF ensemble: the operational Ensemble Prediction System (EPS), the targeted EPS and a high-resolution version of EPS. For each configuration, three successive runs of ECMWF ensemble with the same verification time are grouped together so as to generate a highly-populated "super-ensemble". Then, five members are selected from the super-ensemble and used to provide initial and boundary conditions for the integrations with a limited-area model, whose runs generate a Limited-area Ensemble Prediction System (LEPS). The relative impact of targeting the initial perturbations against increasing the horizontal resolution is assessed for the global ensembles as well as for the properties transferred to LEPS integrations, the attention being focussed on the probabilistic prediction of rainfall over a localised area. At the 108, 84 and 60- hour forecast ranges, the overall performance of the global ensembles is not particularly accurate and the best results are obtained by the high-resolution version of EPS. The LEPS performance is very satisfactory in all configurations and the rainfall maps show probability peaks in the correct regions. LEPS products would have been of great assistance to issue flood risk alerts on the basis of limited-area ensemble forecasts. For the 60-hour forecast range, the sensitivity of the results to the LEPS ensemble size is discussed by comparing a 5-member against a 51-member LEPS, where the limited-area model is nested on all EPS members. Little sensitivity is found as concerns the detection of the regions most likely affected by heavy precipitation, the probability peaks being approximately the same in both configurations.


2016 ◽  
Vol 31 (2) ◽  
pp. 515-530 ◽  
Author(s):  
Florian Weidle ◽  
Yong Wang ◽  
Geert Smet

Abstract It is quite common that in a regional ensemble system the large-scale initial condition (IC) perturbations and the lateral boundary condition (LBC) perturbations are taken from a global ensemble prediction system (EPS). The choice of global EPS as a driving model can have a significant impact on the performance of the regional EPS. This study investigates the impact of large-scale IC/LBC perturbations obtained from different global EPSs on the forecast quality of a regional EPS. For this purpose several experiments are conducted where the Aire Limitée Adaption dynamique Développement International–Limited Area Ensemble Forecasting (ALADIN-LAEF) regional ensemble is forced by two of the world’s leading global ensembles, the European Centre for Medium-Range Weather Forecasts’ Ensemble Prediction System (ECMWF-EPS) and the Global Ensemble Forecasting System (GEFS) from the National Centers for Environmental Prediction (NCEP), which provide the IC and LBC perturbations. The investigation is carried out for a 51-day period during summer 2010 over central Europe. The results indicate that forcing of the regional ensemble with GEFS performs better for surface parameters, whereas at upper levels forcing with ECMWF-EPS is superior. Using perturbations from GEFS lead to a considerably higher spread in ALADIN-LAEF, which is beneficial near the surface where regional EPSs are usually underdispersive. At upper levels, forcing with GEFS leads to an overdispersion of ALADIN-LAEF as a result of the large spread of some parameters, where forcing ALADIN-LAEF with ECMWF-EPS provides statistically more reliable forecasts. The results indicate that the best global EPS might not always provide the best ICs and LBCs for a regional ensemble.


2008 ◽  
Vol 136 (2) ◽  
pp. 443-462 ◽  
Author(s):  
Xiaoli Li ◽  
Martin Charron ◽  
Lubos Spacek ◽  
Guillem Candille

Abstract A regional ensemble prediction system (REPS) with the limited-area version of the Canadian Global Environmental Multiscale (GEM) model at 15-km horizontal resolution is developed and tested. The total energy norm singular vectors (SVs) targeted over northeastern North America are used for initial and boundary perturbations. Two SV perturbation strategies are tested: dry SVs with dry simplified physics and moist SVs with simplified physics, including stratiform condensation and convective precipitation as well as dry processes. Model physics uncertainties are partly accounted for by stochastically perturbing two parameters: the threshold vertical velocity in the trigger function of the Kain–Fritsch deep convection scheme, and the threshold humidity in the Sundqvist explicit scheme. The perturbations are obtained from first-order Markov processes. Short-range ensemble forecasts in summer with 16 members are performed for five different experiments. The experiments employ different perturbation and piloting strategies, and two different surface schemes. Verification focuses on quantitative precipitation forecasts and is done using a range of probabilistic measures. Results indicate that using moist SVs instead of dry SVs has a stronger impact on precipitation than on dynamical fields. Forecast skill for precipitation is greatly influenced by the dominant synoptic weather systems. For stratiform precipitation caused by strong baroclinic systems, the forecast skill is improved in the moist SV experiments relative to the dry SV experiments. For convective precipitation rates in the range 15–50 mm (24 h)−1 produced by weak synoptic baroclinic systems, all experiments exhibit noticeably poorer forecast skills. Skill improvements due to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) surface scheme and stochastic perturbations are also observed.


2008 ◽  
Vol 136 (9) ◽  
pp. 3323-3342 ◽  
Author(s):  
Čedo Branković ◽  
Blaženka Matjačić ◽  
Stjepan Ivatek-Šahdan ◽  
Roberto Buizza

Abstract Dynamical downscaling has been applied to global ensemble forecasts to assess its impact for four cases of severe weather (precipitation and wind) over various parts of Croatia. It was performed with the Croatian 12.2-km version of the Aire Limitée Adaptation Dynamique Développement International (ALADIN) limited-area model, nested in the ECMWF TL255 (approximately 80 km) global ensemble prediction system (EPS). The 3-hourly EPS output was used to force the ALADIN model over the central European/northern Mediterranean domain. Results indicate that the identical clustering algorithm may yield differing results when applied to either global or to downscaled ensembles. It is argued that this is linked to the fact that a downscaled, higher-resolution ensemble resolves more explicitly small-scale features, in particular those strongly influenced by orographic forcing. This result has important implications in limited-area ensemble prediction, since it implies that downscaling may affect the interpretation or relevance of the global ensemble forecasts; that is, it may not always be feasible to make a selection (or a subset) of global lower-resolution ensemble members that might be representative of all possible higher-resolution evolution scenarios.


2014 ◽  
Vol 21 (1) ◽  
pp. 19-39 ◽  
Author(s):  
L. H. Baker ◽  
A. C. Rudd ◽  
S. Migliorini ◽  
R. N. Bannister

Abstract. In this paper ensembles of forecasts (of up to six hours) are studied from a convection-permitting model with a representation of model error due to unresolved processes. The ensemble prediction system (EPS) used is an experimental convection-permitting version of the UK Met Office's 24-member Global and Regional Ensemble Prediction System (MOGREPS). The method of representing model error variability, which perturbs parameters within the model's parameterisation schemes, has been modified and we investigate the impact of applying this scheme in different ways. These are: a control ensemble where all ensemble members have the same parameter values; an ensemble where the parameters are different between members, but fixed in time; and ensembles where the parameters are updated randomly every 30 or 60 min. The choice of parameters and their ranges of variability have been determined from expert opinion and parameter sensitivity tests. A case of frontal rain over the southern UK has been chosen, which has a multi-banded rainfall structure. The consequences of including model error variability in the case studied are mixed and are summarised as follows. The multiple banding, evident in the radar, is not captured for any single member. However, the single band is positioned in some members where a secondary band is present in the radar. This is found for all ensembles studied. Adding model error variability with fixed parameters in time does increase the ensemble spread for near-surface variables like wind and temperature, but can actually decrease the spread of the rainfall. Perturbing the parameters periodically throughout the forecast does not further increase the spread and exhibits "jumpiness" in the spread at times when the parameters are perturbed. Adding model error variability gives an improvement in forecast skill after the first 2–3 h of the forecast for near-surface temperature and relative humidity. For precipitation skill scores, adding model error variability has the effect of improving the skill in the first 1–2 h of the forecast, but then of reducing the skill after that. Complementary experiments were performed where the only difference between members was the set of parameter values (i.e. no initial condition variability). The resulting spread was found to be significantly less than the spread from initial condition variability alone.


Sign in / Sign up

Export Citation Format

Share Document