Semi-supervised learning for increasing transferability of machine learning in digital soil mapping 

2021 ◽  
Author(s):  
Ruhollah Taghizadeh-Mehrjardi ◽  
Razieh Sheikhpour ◽  
Norair Toomanian ◽  
Thomas Scholten

<p>The most critical aspect of application of digital soil mapping is its limited transferability. Modelling soil properties for regions where no or only sparse soil information is available is highly uncertain, when using the low-cost geo-spatial environmental covariates alone. To overcome this drawback, transfer learning has been introduced in different environmental sciences, including soil science. The general idea behind extrapolation of soil information with transfer learning in soil science is that the target area to transfer to is alike, e.g. in terms of soil-forming factors, and the same machine learning rules can be applied. Supervised machine learning, so far, has been used to transfer the soil information from the reference to the target areas with very similar environmental characteristics between both. Hence, it is unclear how machine learning can perform for other target regions with different environmental characteristics. Semi-supervised learning is an approach to machine learning that combines a small amount of labeled data (reference area) with a large amount of unlabeled data (target area) during training. In this study, we explored if semi-supervised learning could improve the transferability of digital soil mapping relative to supervised learning methods. Soil data for two arid regions and associated environmental covariates were obtained. Semi-supervised learning and supervised learning models were trained based on the data in the reference area and then tested based on the data in the target area. The results of this study indicated the higher power of semi-supervised learning for transferring soil information from one area to another in comparison to the supervised learning method.   </p>

2014 ◽  
Vol 63 (1) ◽  
pp. 79-88 ◽  
Author(s):  
László Pásztor ◽  
E. Dobos ◽  
G. Szatmári ◽  
A. Laborczi ◽  
K. Takács ◽  
...  

The main objective of the DOSoReMI.hu (Digital, Optimized, Soil Related Maps and Information in Hungary) project is to significantly extend the potential, how demands on spatial soil related information could be satisfied in Hungary. Although a great amount of soil information is available due to former mappings and surveys, there are more and more frequently emerging discrepancies between the available and the expected data. The gaps are planned to be filled with optimized digital soil mapping (DSM) products heavily based on legacy soil data, which still represent a valuable treasure of soil information at the present time. The paper presents three approaches for the application of Hungarian legacy soil data in object oriented digital soil mapping.


Author(s):  
Martin Meier ◽  
Eliana de Souza ◽  
Marcio Rocha Francelino ◽  
Elpídio Inácio Fernandes Filho ◽  
Carlos Ernesto Gonçalves Reynaud Schaefer

2021 ◽  
Author(s):  
Stephan van der Westhuizen ◽  
Gerard Heuvelink ◽  
David Hofmeyr

<p>Digital soil mapping (DSM) may be defined as the use of a statistical model to quantify the relationship between a certain observed soil property at various geographic locations, and a collection of environmental covariates, and then using this relationship to predict the soil property at locations where the property was not measured. It is also important to quantify the uncertainty with regards to prediction of these soil maps. An important source of uncertainty in DSM is measurement error which is considered as the difference between a measured and true value of a soil property.</p><p>The use of machine learning (ML) models such as random forests (RF) has become a popular trend in DSM. This is because ML models tend to be capable of accommodating highly non-linear relationships between the soil property and covariates. However, it is not clear how to incorporate measurement error into ML models. In this presentation we will discuss how to incorporate measurement error into some popular ML models, starting with incorporating weights into the objective function of ML models that implicitly assume a Gaussian error. We will discuss the effect that these modifications have on prediction accuracy, with reference to simulation studies.</p>


2019 ◽  
Vol 43 (6) ◽  
pp. 827-854 ◽  
Author(s):  
Bradley A Miller ◽  
Eric C Brevik ◽  
Paulo Pereira ◽  
Randall J Schaetzl

The geography of soil is more important today than ever before. Models of environmental systems and myriad direct field applications depend on accurate information about soil properties and their spatial distribution. Many of these applications play a critical role in managing and preparing for issues of food security, water supply, and climate change. The capability to deliver soil maps with the accuracy and resolution needed by land use planning, precision agriculture, as well as hydrologic and meteorologic models is, fortunately, on the horizon due to advances in the geospatial revolution. Digital soil mapping, which utilizes spatial statistics and data provided by modern geospatial technologies, has now become an established area of study for soil scientists. Over 100 articles on digital soil mapping were published in 2018. The first and second generations of soil mapping thrived from collaborations between Earth scientists and geographers. As we enter the dawn of the third generation of soil maps, those collaborations remain essential. To that end, we review the historical connections between soil science and geography, examine the recent disconnect between those disciplines, and draw attention to opportunities for the reinvigoration of the long-standing field of soil geography. Finally, we emphasize the importance of this reinvigoration to geographers.


2016 ◽  
Vol 73 (3) ◽  
pp. 266-273 ◽  
Author(s):  
Gustavo Pais de Arruda ◽  
José A. M. Demattê ◽  
César da Silva Chagas ◽  
Peterson Ricardo Fiorio ◽  
Arnaldo Barros e Souza ◽  
...  

CATENA ◽  
2021 ◽  
Vol 196 ◽  
pp. 104940
Author(s):  
Gustavo A. Araujo-Carrillo ◽  
Viviana Marcela Varón-Ramírez ◽  
Camilo Ignacio Jaramillo-Barrios ◽  
Jhon M. Estupiñan-Casallas ◽  
Elías Alexander Silva-Arero ◽  
...  

Geoderma ◽  
2017 ◽  
Vol 303 ◽  
pp. 118-132 ◽  
Author(s):  
Xiao-Lin Sun ◽  
Hui-Li Wang ◽  
Yu-Guo Zhao ◽  
Chaosheng Zhang ◽  
Gan-Lin Zhang

Sign in / Sign up

Export Citation Format

Share Document