scholarly journals DIGITAL DOCUMENTATION, BRIDGE DECK LINEARITY DEFORMATION AND DECK THICKNESS MEASUREMENT USING TERRESTRIAL LASER SCANNER (TLS) AND CLOSE RANGE PHOTOGRAMMETRY (CRP)

Author(s):  
S. K. P. Kushwaha ◽  
H. Pande ◽  
S. Raghavendra

<p><strong>Abstract.</strong> Bridges are one of the vital and valuable engineer structure from decades. As they play a major role in the road transportation sector. Few old bridges lacks its documents about the measurements of the structure. The study has been carried out on three different types of bridges like Truss, Beam and Cable bridges. Documenting these bridges can be utilised to reconstruct or renovate the bridge in case of any disaster or damage. 3D documentation is made from the point cloud Dataset acquired from Terrestrial Laser Scanner – TLS (Riegl VZ 400) and Close Range photogrammetry – CRP (Nikon DSLR 5300). TLS and CRP point cloud are merged together to increase the density of points. Over the duration of time the bridge gets older and due to the load on the bridge deck, linearity in the deck effects and this linearity deformation measurement is important to know the present deformation in the deck. To know exactly at which part there is more linearity deformation, deflection is calculated at sample intervals between the present linearity conditions of the deck to the idle linearity conditions of the deck. The bridge deck thickness is also measured with the point cloud dataset. A slice is cut through the deck of point cloud dataset, the difference between the top and bottom layer of the deck gives us the thickness of the deck including the road. This thickness can be used to measure when a new deck layer is constructed or during filling up of any potholes. This study is mainly focused to help the construction and maintenance authority, bridge monitoring department and researchers.</p>

Author(s):  
Cecilia Maria Bolognesi ◽  
Fausta Fiorillo

The integration of close-range photogrammetry and terrestrial laser scanner enables reality-based modeling procedures that can help BIM modeling for existing buildings. The restitution of virtual models from high-resolution surveys is a complex process that requires much expertise. It incorporates concepts of resolution, accuracy, and precision in the acquisition phase; filtering, registration, and decimation for point cloud elaboration; and meshing, texturing, simplification, segmentation, and feature extraction in the final modeling stage. The previous steps are the same whether the ultimate goal is a classic 2D representation or a 3D one. For BIM modeling, the job becomes challenging because the necessary simplification of the model cannot be automatized and apparently collides with the high resolution and fidelity of original surveyed data. This chapter presents the process of surveying and 3D modeling of the Ghesc village, following the whole path from data acquisition to BIM modeling, discussing strengths and weakness, issues, and recent solutions for restoration interventions.


2011 ◽  
Vol 2 (3) ◽  
pp. 53 ◽  
Author(s):  
Javier Cardenal Escarcena ◽  
Emilio Mata de Castro ◽  
José Luis Pérez García ◽  
Antonio Mozas Calvache ◽  
Tomás Fernández del Castillo ◽  
...  

<p>This paper presents the preliminary works of the Integration of Photogrammetric and Terrestrial Laser Scanner Techniques for Heritage Documentation Research Project (IFOTEL TIN2009-09939; Ministry of Science and Innovation, National Programme R+D+I, 2008-2011). The IFOTEL project aims with the improvement and optimization of heritage documentation by means of combination and integration of different methods and techniques, mainly close range photogrammetry (both terrestrial and aerial with light platforms), terrestrial laser scanner and surveying, joining the advantages of the different methods but also minimizing the disadvantages of each single technique.</p>


2021 ◽  
Vol 13 (13) ◽  
pp. 2494
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

T-splines have recently been introduced to represent objects of arbitrary shapes using a smaller number of control points than the conventional non-uniform rational B-splines (NURBS) or B-spline representatizons in computer-aided design, computer graphics and reverse engineering. They are flexible in representing complex surface shapes and economic in terms of parameters as they enable local refinement. This property is a great advantage when dense, scattered and noisy point clouds are approximated using least squares fitting, such as those from a terrestrial laser scanner (TLS). Unfortunately, when it comes to assessing the goodness of fit of the surface approximation with a real dataset, only a noisy point cloud can be approximated: (i) a low root mean squared error (RMSE) can be linked with an overfitting, i.e., a fitting of the noise, and should be correspondingly avoided, and (ii) a high RMSE is synonymous with a lack of details. To address the challenge of judging the approximation, the reference surface should be entirely known: this can be solved by printing a mathematically defined T-splines reference surface in three dimensions (3D) and modeling the artefacts induced by the 3D printing. Once scanned under different configurations, it is possible to assess the goodness of fit of the approximation for a noisy and potentially gappy point cloud and compare it with the traditional but less flexible NURBS. The advantages of T-splines local refinement open the door for further applications within a geodetic context such as rigorous statistical testing of deformation. Two different scans from a slightly deformed object were approximated; we found that more than 40% of the computational time could be saved without affecting the goodness of fit of the surface approximation by using the same mesh for the two epochs.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


2021 ◽  
Author(s):  
Ali Mirzazade ◽  
Cosmin Popescu ◽  
Thomas Blanksvärd ◽  
Björn Täljsten

<p>In bridge inspection, vertical displacement is a relevant parameter for both short and long-term health monitoring. Assessing change in deflections could also simplify the assessment work for inspectors. Recent developments in digital camera technology and photogrammetry software enables point cloud with colour information (RGB values) to be generated. Thus, close range photogrammetry offers the potential of monitoring big and small-scale damages by point clouds. The current paper aims to monitor geometrical deviations in Pahtajokk Bridge, Northern Sweden, using an optical data acquisition technique. The bridge in this study is scanned two times by almost one year a part. After point cloud generation the datasets were compared to detect geometrical deviations. First scanning was carried out by both close range photogrammetry (CRP) and terrestrial laser scanning (TLS), while second scanning was performed by CRP only. Analyzing the results has shown the potential of CRP in bridge inspection.</p>


Author(s):  
T. Mizoguchi ◽  
Y. Kobayashi

For forest management or monitoring, it is required to constantly measure several parameters of each tree, such as height, diameter at breast height, and trunk volume. Terrestrial laser scanner has been used for this purpose instead of human workers to reduce time and cost for the measurement. In order to use point cloud captured by terrestrial laser scanner in the above applications, it is an important step to extract all trees or their trunks separately. For this purpose, we propose an interactive system in which a user can intuitively and efficiently extract each trunk by a simple editing on the distance image created from the point cloud. We demonstrate the effectiveness of our proposed system from various experiments.


2019 ◽  
Vol 11 (18) ◽  
pp. 2154 ◽  
Author(s):  
Ján Šašak ◽  
Michal Gallay ◽  
Ján Kaňuk ◽  
Jaroslav Hofierka ◽  
Jozef Minár

Airborne and terrestrial laser scanning and close-range photogrammetry are frequently used for very high-resolution mapping of land surface. These techniques require a good strategy of mapping to provide full visibility of all areas otherwise the resulting data will contain areas with no data (data shadows). Especially, deglaciated rugged alpine terrain with abundant large boulders, vertical rock faces and polished roche-moutones surfaces complicated by poor accessibility for terrestrial mapping are still a challenge. In this paper, we present a novel methodological approach based on a combined use of terrestrial laser scanning (TLS) and close-range photogrammetry from an unmanned aerial vehicle (UAV) for generating a high-resolution point cloud and digital elevation model (DEM) of a complex alpine terrain. The approach is demonstrated using a small study area in the upper part of a deglaciated valley in the Tatry Mountains, Slovakia. The more accurate TLS point cloud was supplemented by the UAV point cloud in areas with insufficient TLS data coverage. The accuracy of the iterative closest point adjustment of the UAV and TLS point clouds was in the order of several centimeters but standard deviation of the mutual orientation of TLS scans was in the order of millimeters. The generated high-resolution DEM was compared to SRTM DEM, TanDEM-X and national DMR3 DEM products confirming an excellent applicability in a wide range of geomorphologic applications.


Sign in / Sign up

Export Citation Format

Share Document