scholarly journals SUITABLE DEM ASSESSMENT STUDY FOR DATA SCARCE CITIES TOWARDS URBAN EXTREME AND NUISANCE FLOOD MAPPING

Author(s):  
A. Akkimi ◽  
S. Dutta

Abstract. The high-resolution accurate topography data should be used for extreme and nuisance flood inundation modeling and mapping in cities, but not available for many cities, including most developed countries. It is necessary to study and identify an alternate open-source topographic model that satisfies high-resolution topography datasets’ conditions. We analyzed the open-source DEMs visually, elevation histogram statistics, streams and watershed identification, contour statistics, Topographic Wetness Index, and vertical accuracy of other medium-resolution DEMs compared with high-resolution LiDAR data over New York City to determine alternative open-source Digital Elevation Model in the context of urban flood modeling. In high urban sprawl areas, in the context of flood mapping, our findings have shown that the medium resolution DEMs predicted similar to high-resolution DEMs with the same linear errors around RMSE 25–35ft and LE90 30–40ft. Overall, the ALOS AW3D performed better than other open-source DEMs. Even though SRTM predicted well, it inducted smoothness in DEM where more buildings were located. It noted that ALOS PALSAR DEM is not suitable for any urban studies. ASTER DEM has also shown good agreement with LiDAR and observed elevations, but it induced by noise while processing. Finally, it can be suggested that the ALOS AW3D can be used as an alternative source for urban flood modeling which represented footprints of buildings even though it performed average in vertical accuracy.

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2139 ◽  
Author(s):  
Yunsong Cui ◽  
Qiuhua Liang ◽  
Gang Wang ◽  
Jiaheng Zhao ◽  
Jinchun Hu ◽  
...  

Urban flooding as a result of inadequate drainage capacity, failure of flood defenses, etc. is usually featured with highly transient hydrodynamics. Reliable and efficient prediction and forecasting of these urban flash floods is still a great technical challenge. Meanwhile, in urban environments, the flooding hydrodynamics and process may be influenced by flow regulation and flood protection hydraulic infrastructure systems, such as sluice gates, which should be effectively taken into account in an urban flood model. However, direct simulation of hydraulic structures is not a current practice in 2D urban flood modeling. This work aims to develop a robust numerical approach to directly simulate the effects of gate structures in a 2D high-resolution urban flood model. A new modeling component is developed and fully coupled to a finite volume Godunov-type shock-capturing shallow water model, to directly simulate the highly transient flood waves through hydraulic structures. Different coupling approaches, i.e., flux term coupling and source term coupling, are implemented and compared. A numerical experiment conducted for an analytical dam-break test indicates that the flux term coupling approach may lead to more accurate results, with the calculated RMSE against water level 28%–38% less than that produced by the source term coupling approach. The flux term coupling approach is therefore adopted to improve the current urban flood model, and it is further tested by reproducing the laboratory experiments of flood routing in a flume with partially open sluice gates, conducted in the hydraulic laboratory at the Zhejiang Institute of Hydraulics and Estuary, China. The numerical results are compared favorably with experimental measurements, with a maximum RMSE of 0.0851 for all the individual tests. The satisfactory results demonstrate that the flood model implemented with the flux coupling approach is able to accurately simulate the flow through hydraulic structures, with enhanced predictive capability for urban flood modeling.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1483
Author(s):  
Qianqian Zhou ◽  
Jiongheng Su ◽  
Karsten Arnbjerg-Nielsen ◽  
Yi Ren ◽  
Jinhua Luo ◽  
...  

Urban floods are detrimental to societies, and flood mapping techniques provide essential support for decision-making on the better management of flood risks. This study presents a GIS-based flood characterization methodology for the rapid and efficient identification of urban flood-prone areas, which is especially relevant for large-scale flood hazards and emergency assessments for data-scarce studies. The results suggested that optimal flood mapping was achieved by adopting the median values of the thresholds for local depression extraction, the topographic wetness index (TWI) and aggregation analyses. This study showed the constraints of the depression extraction and TWI methods and proposed a methodology to improve the performance. A new performance indicator was further introduced to improve the evaluation ability of hazard mapping. It was shown that the developed methodology has a much lower demand on the data and computation efforts in comparison to the traditional two-dimensional models and, meanwhile, provides relatively accurate and robust assessments of flood hazards.


2019 ◽  
Author(s):  
YUNSONG CUI ◽  
QIUHUA LIANG ◽  
GANG WANG ◽  
JINCHUN HU ◽  
YUEHUA WANG

2020 ◽  
Vol 12 (19) ◽  
pp. 3141
Author(s):  
Ian Olthof ◽  
Nicolas Svacina

The increasing frequency of flooding worldwide has driven research to improve near real-time flood mapping from remote-sensing data. Improved automation and processing speed to map both open water and vegetated area flooding have resulted from these research efforts. Despite these achievements, flood mapping in urban areas where a significant number of overall impacts are felt remains a challenge. Near real-time data availability, shadowing caused by manmade infrastructure, spatial resolution, and cloud cover inhibiting optical transmission, are all factors that complicate detailed urban flood mapping needed to inform response efforts. This paper uses numerous data sources collected during two major flood events that impacted the same region of Eastern Canada in 2017 and 2019 to test different urban flood mapping approaches presented as case studies in three separate urban boroughs. Cloud-free high-resolution 3 m PlanetLab optical data acquired near peak-flood in 2019 were used to generate a maximum flood extent product for that year. Approaches using new Lidar Digital Elevation Models (DEM)s and water height estimated from nineteen RADARSAT-2 flood maps, point-based flood perimeter observations from citizen geographic information, and simulated traffic camera or other urban sensor network data were tested and verified using independent data. Coherent change detection (CCD) using multi-temporal Interferometric Wide (IW) Sentinel-1 data was also tested. Results indicate that while clear-sky high-resolution optical imagery represents the current gold standard, its availability is not guaranteed due to timely coverage and cloud cover. Water height estimated from 8 to 12.5 m resolution RADARSAT-2 flood perimeters were not sufficiently accurate to flood adjacent urban areas using a Lidar DEM in near real-time, but all nineteen scenes combined captured boroughs that flooded at least once in both flood years. CCD identified flooded boroughs and roughly captured their flood extents, but lacked timeliness and sufficient detail to inform street-level decision-making in near real-time. Point-based flood perimeter observation, whether from in-situ sensors or high-resolution optical satellites combined with Lidar DEMs, can generate accurate full flood extents under certain conditions. Observed point-based flood perimeters on manmade features with low topographic variation produced the most accurate flood extents due to reliable water height estimation from these points.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2629
Author(s):  
Sebastian Ramsauer ◽  
Jorge Leandro ◽  
Qing Lin

Urban flood modeling benefits from new remote sensing technologies, which provide high-resolution data and allow the consideration of small-scale urban key features. Since high-resolution data often result in large simulation runtimes, coarsening of the 2D grid via resampling techniques can be used to achieve a good balance between accuracy and computation time. However, the representation of urban features and topographical properties degrades, since small-scale features are blurred. Therefore, narrow flow paths between buildings are often not considered, building’s sizes are overestimated, and their arrangement in the grid changes. Thus, flow paths change and waterways are blocked, leading to incorrect inundations around buildings. This paper develops a method to improve the simulation results of coarser grids by adding virtual surface links (VSL) between buildings. The VSL mimic the flow paths of a high-resolution model in the areas of interest. The approach is developed for dual-drainage 1D/2D models. The approach shows a visible improvement at the localized level where the VSL are applied, in terms of under/overestimating flooding and a moderate overall improvement of the simulation results. Relatively to the model resolution of 2 m, the computational time, by applying this method, is reduced by 93.6% when using a 5 m grid and by 99% when using a 10 m grid. For a small test case, where the local effects are investigated, the error in the maximum water volume, relative to a grid size of 2 m, is reduced from 69.63% to 5.03% by using a 5 m grid and from 152.75% to 22.92% for a 10 m grid.


2014 ◽  
Vol 35 (9) ◽  
pp. 3237-3253 ◽  
Author(s):  
Fang Zhang ◽  
Xiaolin Zhu ◽  
Desheng Liu

Sign in / Sign up

Export Citation Format

Share Document