A First High-Resolution Open Access Data and Open Source GIS Model-Prediction for the Globally Threatened Sarus Crane (Antigone antigone) in Nepal: Data Mining of 81 Predictors Support Evidence for Ongoing Declines in Distribution and Abundance

Author(s):  
Dikpal Krishna Karmacharya ◽  
Falk Huettmann ◽  
Chunrong Mi ◽  
Xuesong Han ◽  
Rabita Duwal ◽  
...  
2018 ◽  
Vol 4 (4) ◽  
pp. 433-470 ◽  
Author(s):  
Falk Huettmann ◽  
Stefanie M. Ickert-Bond

With the advent of global online data sharing initiatives, few limits remain to using the treasure troves of museum data for biodiversity and conservation. The University of Alaska Museum Herbarium is fully online with metadata. Over 260 000 specimens representing the largest collection of Alaska plants anywhere can be data mined. We found that most specimens were collected through the National Park Service’s Inventory and Monitoring program at Denali National Park and Preserve. The majority of specimens were collected along roads, trails, coastline, or waterways, while high-altitude, remote, and pristine sampling locations are underrepresented still. Actual field efforts varied over the years, peaking in the late 1980s. From 1 to 400 specimens were collected per sampling location, and on average 40 species were obtained per collection event at a unique location. Our analysis presents a first data mining inventory of such open access data allowing for a rapid assessment, quality control, and predictive modeling involving automated high-performing machine learning algorithms and mapping analysis using open geographic information systems concepts. Our research sets a first template for more investigations in the Arctic and we briefly compare with selected specimen details from adjacent landscapes such as the Russian Far East, Canada, and the Circumpolar North.


2017 ◽  
Author(s):  
Sumithra Sriram ◽  
Falk Huettmann

Abstract. Peregrine falcons (Falco peregrinus) are among the fastest members of the animal kingdom, and they are probably the most widely distributed raptors in the world; their migrations and habitats range from the tundra, mountains and some deserts to the tropics, coastal zones and urban habitats. Habitat loss, conversion, contamination, pesticides and other anthropogenic pressures are all known factors that have an adverse effect on these species. However, while peregrine falcons were removed from the list of endangered species due to rebounding populations linked with the DDT ban in many nations of the world, no accurate global distribution models have ever been developed for good conservation practice and in an open access data framework. Here we used the best-available open access peregrine falcon data from the Global Biodiversity Information Facility (GBIF.org) to obtain the first publicly available global distribution model for peregrine falcons. For that purpose, we compiled over a hundred high resolution global GIS layers (1 km pixel size) that incorporated various variables such as biological, climatic, and socio-economic predictors allowing to analysis habitat relationships in a holistic fashion and to build a generalizable model. These value-added layers have also been made available by us for the global public, free of charge, for further use and consumption in any modeling effort wanted (https://scholarworks.alaska.edu/handle/11122/7151). We created data extraction explicit in space and time also with an open source python script tool as well as with ArcGIS (via the GUI) on a PC. The obtained data cube (global, 1 km pixel, 104 GIS layers) was "mined" with the Salford Predictive Modeler (SPM) software suite, which offers one of the best platforms for data mining, to build the prediction model for robust inference. We found that peregrine falcons are widely urbanized occurring in coastal areas and also associated with riparian zones. This is the first model ever obtained using 104 predictors on a 1 km scale predicting the potential ecological niche of falcons around the world. While our model might show uncertainty for parts of Siberia, Russia, it has an assessed global accuracy of over 95 % and hence provides the currently best possible public available global prediction model for peregrine falcons, based on all available empirical data. Overlaid with the national parks of the world we found that most peregrine hotspots are actually located outside of protected areas warranting more protection efforts while global change unfolds. Finally, a nationwide assessment of the presence points taken from GBIF allows for insight as to the many signatory nations that are still in violation of the open access data sharing requirement set by the Convention of Biological Diversity (CBD) and the Budapest and Berlin Declaration.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Khodabakhsh Zabihi ◽  
Falk Huettmann ◽  
Brian Young

Native bark beetles (Coleoptera: Curculionidae: Scolytinae) are a multi-species complex that rank among the key disturbances of coniferous forests of western North America. Many landscape-level variables are known to influence beetle outbreaks, such as suitable climatic conditions, spatial arrangement of incipient populations, topography, abundance of mature host trees, and disturbance history that include former outbreaks and fire. We assembled the first open access data, which can be used in open source GIS platforms, for understanding the ecology of the bark beetle organism in Alaska. We used boosted classification and regression tree as a machine learning data mining algorithm to model-predict the relationship between 14 environmental variables, as model predictors, and 838 occurrence records of 68 bark beetle species compared to pseudo-absence locations across the state of Alaska. The model predictors include topography- and climate-related predictors as well as feature proximities and anthropogenic factors. We were able to model, predict, and map the multi-species bark beetle occurrences across the state of Alaska on a 1-km spatial resolution in addition to providing a good quality environmental dataset freely accessible for the public. About 16% of the mixed forest and 59% of evergreen forest are expected to be occupied by the bark beetles based on current climatic conditions and biophysical attributes of the landscape. The open access dataset that we prepared, and the machine learning modeling approach that we used, can provide a foundation for future research not only on scolytines but for other multi-species questions of concern, such as forest defoliators, and small and big game wildlife species worldwide.


2021 ◽  
Author(s):  
Florian Betz ◽  
Magdalena Lauermann ◽  
Bernd Cyffka

<p>In fluvial geomorphology as well as in freshwater ecology, rivers are commonly seen as nested hierarchical systems functioning over a range of spatial and temporal scales. Thus, for a comprehensive assessment, information on various scales is required. Over the past decade, remote sensing based approaches have become increasingly popular in river science to increase the spatial scale of analysis. However, data-scarce areas have been mostly ignored so far despite the fact that most remaining free flowing – and thus ecologically valuable – rivers worldwide are located in regions characterized by a lack of data sources like LiDAR or even aerial imagery. High resolution satellite data would be able to fill this data gap, but tends to be too costly for large scale applications what limits the ability for comprehensive studies on river systems in such remote areas. This in turn is a limitation for management and conservation of these rivers.</p><p>In this contribution, we suggest an approach for river corridor mapping based on open access data only in order to foster large scale geomorphological mapping of river corridors in data-scarce areas. For this aim, we combine advanced terrain analysis with multispectral remote sensing using the SRTM-1 DEM along with Landsat OLI imagery. We take the Naryn River in Kyrgyzstan as an example to demonstrate the potential of these open access data sets to derive a comprehensive set of parameters for characterizing this river corridor. The methods are adapted to the specific characteristics of medium resolution open access data sets and include an innovative, fuzzy logic based approach for riparian zone delineation, longitudinal profile smoothing based on constrained quantile regression and a delineation of the active channel width as needed for specific stream power computation. In addition, an indicator for river dynamics based on Landsat time series is developed. For each derived river corridor parameter, a rigor validation is performed. The results demonstrate, that our open access approach for geomorphological mapping of river corridors is capable to provide results sufficiently accurate to derive reach averaged information. Thus, it is well suited for large scale river characterization in data-scarce regions where otherwise the river corridors would remain largely unexplored from an up-to-date riverscape perspective. Such a characterization might be an entry point for further, more detailed research in selected study reaches and can deliver the required comprehensive background information for a range of topics in river science.</p>


2017 ◽  
Author(s):  
Christopher R Madan

Until recently, neuroimaging data for a research study needed to be collected within one’s own lab. However, when studying inter-individual differences in brain structure, a large sample of participants is necessary. Given the financial costs involved in collecting neuroimaging data from hundreds or thousands of participants, large-scale studies of brain morphology could previously only be conducted by well-funded laboratories with access to MRI facilities and to large samples of participants. With the advent of broad open-access data-sharing initiatives, this has recently changed–here the primary goal of the study is to collect large datasets to be shared, rather than sharing of the data as an afterthought. This paradigm shift is evident as increase in the pace of discovery, leading to a rapid rate of advances in our characterization of brain structure. The utility of open-access brain morphology data is numerous, ranging from observing novel patterns of age-related differences in subcortical structures to the development of more robust cortical parcellation atlases, with these advances being translatable to improved methods for characterizing clinical disorders (see Figure 1 for an illustration). Moreover, structural MRIs are generally more robust than functional MRIs, relative to potential artifacts and in being not task-dependent, resulting in large potential yields. While the benefits of open-access data have been discussed more broadly within the field of cognitive neuroscience elsewhere (Gilmore et al., 2017; Poldrack and Gorgolewski, 2014; Van Horn and Gazzaniga, 2013; Voytek, 2016), as well as in other fields (Ascoli et al., 2017; Choudhury et al., 2014; Davies et al., 2017), the current paper is focused specifically on the implications of open data to brain morphology research.


Author(s):  
Ilaria Mariani ◽  
Stefano Parisi ◽  
Patrizia Bolzan ◽  
Mil Stepanovic ◽  
Michele Invernizzi ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5044
Author(s):  
Alexandros Korkovelos ◽  
Babak Khavari ◽  
Andreas Sahlberg ◽  
Mark Howells ◽  
Christopher Arderne ◽  
...  

The authors wish to make a change in author names (adding new author—Dimitrios Mentis) to this paper [...]


2020 ◽  
Vol 31 (9) ◽  
pp. 2170-2184
Author(s):  
Laurens Versluis ◽  
Roland Matha ◽  
Sacheendra Talluri ◽  
Tim Hegeman ◽  
Radu Prodan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document