scholarly journals UAV-BASED AUTOMATIC TREE GROWTH MEASUREMENT FOR BIOMASS ESTIMATION

Author(s):  
M. Karpina ◽  
M. Jarząbek-Rychard ◽  
P. Tymków ◽  
A. Borkowski

Manual in-situ measurements of geometric tree parameters for the biomass volume estimation are time-consuming and economically non-effective. Photogrammetric techniques can be deployed in order to automate the measurement procedure. The purpose of the presented work is an automatic tree growth estimation based on Unmanned Aircraft Vehicle (UAV) imagery. The experiment was conducted in an agriculture test field with scots pine canopies. The data was collected using a Leica Aibotix X6V2 platform equipped with a Nikon D800 camera. Reference geometric parameters of selected sample plants were measured manually each week. In situ measurements were correlated with the UAV data acquisition. The correlation aimed at the investigation of optimal conditions for a flight and parameter settings for image acquisition. The collected images are processed in a state of the art tool resulting in a generation of dense 3D point clouds. The algorithm is developed in order to estimate geometric tree parameters from 3D points. Stem positions and tree tops are identified automatically in a cross section, followed by the calculation of tree heights. The automatically derived height values are compared to the reference measurements performed manually. The comparison allows for the evaluation of automatic growth estimation process. The accuracy achieved using UAV photogrammetry for tree heights estimation is about 5cm.

Author(s):  
M. Karpina ◽  
M. Jarząbek-Rychard ◽  
P. Tymków ◽  
A. Borkowski

Manual in-situ measurements of geometric tree parameters for the biomass volume estimation are time-consuming and economically non-effective. Photogrammetric techniques can be deployed in order to automate the measurement procedure. The purpose of the presented work is an automatic tree growth estimation based on Unmanned Aircraft Vehicle (UAV) imagery. The experiment was conducted in an agriculture test field with scots pine canopies. The data was collected using a Leica Aibotix X6V2 platform equipped with a Nikon D800 camera. Reference geometric parameters of selected sample plants were measured manually each week. In situ measurements were correlated with the UAV data acquisition. The correlation aimed at the investigation of optimal conditions for a flight and parameter settings for image acquisition. The collected images are processed in a state of the art tool resulting in a generation of dense 3D point clouds. The algorithm is developed in order to estimate geometric tree parameters from 3D points. Stem positions and tree tops are identified automatically in a cross section, followed by the calculation of tree heights. The automatically derived height values are compared to the reference measurements performed manually. The comparison allows for the evaluation of automatic growth estimation process. The accuracy achieved using UAV photogrammetry for tree heights estimation is about 5cm.


2021 ◽  
Vol 10 (5) ◽  
pp. 345
Author(s):  
Konstantinos Chaidas ◽  
George Tataris ◽  
Nikolaos Soulakellis

In a post-earthquake scenario, the semantic enrichment of 3D building models with seismic damage is crucial from the perspective of disaster management. This paper aims to present the methodology and the results for the Level of Detail 3 (LOD3) building modelling (after an earthquake) with the enrichment of the semantics of the seismic damage based on the European Macroseismic Scale (EMS-98). The study area is the Vrisa traditional settlement on the island of Lesvos, Greece, which was affected by a devastating earthquake of Mw = 6.3 on 12 June 2017. The applied methodology consists of the following steps: (a) unmanned aircraft systems (UAS) nadir and oblique images are acquired and photogrammetrically processed for 3D point cloud generation, (b) 3D building models are created based on 3D point clouds and (c) 3D building models are transformed into a LOD3 City Geography Markup Language (CityGML) standard with enriched semantics of the related seismic damage of every part of the building (walls, roof, etc.). The results show that in following this methodology, CityGML LOD3 models can be generated and enriched with buildings’ seismic damage. These models can assist in the decision-making process during the recovery phase of a settlement as well as be the basis for its monitoring over time. Finally, these models can contribute to the estimation of the reconstruction cost of the buildings.


2021 ◽  
Vol 13 (9) ◽  
pp. 1859
Author(s):  
Xiangyang Liu ◽  
Yaxiong Wang ◽  
Feng Kang ◽  
Yang Yue ◽  
Yongjun Zheng

The characteristic parameters of Citrus grandis var. Longanyou canopies are important when measuring yield and spraying pesticides. However, the feasibility of the canopy reconstruction method based on point clouds has not been confirmed with these canopies. Therefore, LiDAR point cloud data for C. grandis var. Longanyou were obtained to facilitate the management of groves of this species. Then, a cloth simulation filter and European clustering algorithm were used to realize individual canopy extraction. After calculating canopy height and width, canopy reconstruction and volume calculation were realized using six approaches: by a manual method and using five algorithms based on point clouds (convex hull, CH; convex hull by slices; voxel-based, VB; alpha-shape, AS; alpha-shape by slices, ASBS). ASBS is an innovative algorithm that combines AS with slices optimization, and can best approximate the actual canopy shape. Moreover, the CH algorithm had the shortest run time, and the R2 values of VCH, VVB, VAS, and VASBS algorithms were above 0.87. The volume with the highest accuracy was obtained from the ASBS algorithm, and the CH algorithm had the shortest computation time. In addition, a theoretical but preliminarily system suitable for the calculation of the canopy volume of C. grandis var. Longanyou was developed, which provides a theoretical reference for the efficient and accurate realization of future functional modules such as accurate plant protection, orchard obstacle avoidance, and biomass estimation.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 75
Author(s):  
Dario Carrea ◽  
Antonio Abellan ◽  
Marc-Henri Derron ◽  
Neal Gauvin ◽  
Michel Jaboyedoff

The use of 3D point clouds to improve the understanding of natural phenomena is currently applied in natural hazard investigations, including the quantification of rockfall activity. However, 3D point cloud treatment is typically accomplished using nondedicated (and not optimal) software. To fill this gap, we present an open-source, specific rockfall package in an object-oriented toolbox developed in the MATLAB® environment. The proposed package offers a complete and semiautomatic 3D solution that spans from extraction to identification and volume estimations of rockfall sources using state-of-the-art methods and newly implemented algorithms. To illustrate the capabilities of this package, we acquired a series of high-quality point clouds in a pilot study area referred to as the La Cornalle cliff (West Switzerland), obtained robust volume estimations at different volumetric scales, and derived rockfall magnitude–frequency distributions, which assisted in the assessment of rockfall activity and long-term erosion rates. An outcome of the case study shows the influence of the volume computation on the magnitude–frequency distribution and ensuing erosion process interpretation.


2019 ◽  
Vol 232 ◽  
pp. 111309 ◽  
Author(s):  
Yunsheng Wang ◽  
Jiri Pyörälä ◽  
Xinlian Liang ◽  
Matti Lehtomäki ◽  
Antero Kukko ◽  
...  

Author(s):  
J. Wang ◽  
R. Lindenbergh

Urban trees are an important component of our environment and ecosystem. Trees are able to combat climate change, clean the air and cool the streets and city. Tree inventory and monitoring are of great interest for biomass estimation and change monitoring. Conventionally, parameters of trees are manually measured and documented in situ, which is not efficient regarding labour and costs. Light Detection And Ranging (LiDAR) has become a well-established surveying technique for the acquisition of geo-spatial information. Combined with automatic point cloud processing techniques, this in principle enables the efficient extraction of geometric tree parameters. In recent years, studies have investigated to what extend it is possible to perform tree inventories using laser scanning point clouds. Give the availability of a city of Delft Open data tree repository, we are now able to present, validate and extend a workflow to automatically obtain tree data from tree location until tree species. The results of a test over 47 trees show that the proposed methods in the workflow are able to individual urban trees. The tree species classification results based on the extracted tree parameters show that only one tree was wrongly classified using k-means clustering.


2020 ◽  
Vol 9 (7) ◽  
pp. 447
Author(s):  
Nikolaos Soulakellis ◽  
Christos Vasilakos ◽  
Stamatis Chatzistamatis ◽  
Dimitris Kavroudakis ◽  
Georgios Tataris ◽  
...  

Geoinformatics plays an essential role during the recovery phase of a post-earthquake situation. The aim of this paper is to present the methodology followed and the results obtained by the utilization of Unmanned Aircraft Systems (UASs) 4K-video footage processing and the automation of geo-information methods targeted at both monitoring the demolition process and mapping the demolished buildings. The field campaigns took place on the traditional settlement of Vrisa (Lesvos, Greece), which was heavily damaged by a strong earthquake (Mw=6.3) on June 12th, 2017. For this purpose, a flight campaign took place on 3rd February 2019 for collecting aerial 4K video footage using an Unmanned Aircraft. The Structure from Motion (SfM) method was applied on frames which derived from the 4K video footage, for producing accurate and very detailed 3D point clouds, as well as the Digital Surface Model (DSM) of the building stock of the Vrisa traditional settlement, twenty months after the earthquake. This dataset has been compared with the corresponding one which derived from 25th July 2017, a few days after the earthquake. Two algorithms have been developed for detecting the demolished buildings of the affected area, based on the DSMs and 3D point clouds, correspondingly. The results obtained have been tested through field studies and demonstrate that this methodology is feasible and effective in building demolition detection, giving very accurate results (97%) and, in parallel, is easily applicable and suit well for rapid demolition mapping during the recovery phase of a post-earthquake scenario. The significant advantage of the proposed methodology is its ability to provide reliable results in a very low cost and time-efficient way and to serve all stakeholders and national and local organizations that are responsible for post-earthquake management.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 618 ◽  
Author(s):  
Samuel C. Hassler ◽  
Fulya Baysal-Gurel

Numerous sensors have been developed over time for precision agriculture; though, only recently have these sensors been incorporated into the new realm of unmanned aircraft systems (UAS). This UAS technology has allowed for a more integrated and optimized approach to various farming tasks such as field mapping, plant stress detection, biomass estimation, weed management, inventory counting, and chemical spraying, among others. These systems can be highly specialized depending on the particular goals of the researcher or farmer, yet many aspects of UAS are similar. All systems require an underlying platform—or unmanned aerial vehicle (UAV)—and one or more peripherals and sensing equipment such as imaging devices (RGB, multispectral, hyperspectral, near infra-red, RGB depth), gripping tools, or spraying equipment. Along with these wide-ranging peripherals and sensing equipment comes a great deal of data processing. Common tools to aid in this processing include vegetation indices, point clouds, machine learning models, and statistical methods. With any emerging technology, there are also a few considerations that need to be analyzed like legal constraints, economic trade-offs, and ease of use. This review then concludes with a discussion on the pros and cons of this technology, along with a brief outlook into future areas of research regarding UAS technology in agriculture.


Author(s):  
Garegin Tepanosayn ◽  
Vahagn Muradyan ◽  
Azatuhi Hovsepyan ◽  
Lilit Minasyan ◽  
Shushanik Asmaryan

Abstract The Sevan is one of the world’s largest highland lakes and the largest drinking water reservoir to the South Caucasus. An intensive drop in the level of the lake that occurred over the last decades of the 20th century has brought to eutrophication. The 2000s were marked by an increase in the level of the lake and development of fish farming. To assess possible effect of these processes on water quality, creating a state-ofthe- art water quality monitoring system is required. Traditional approaches to monitoring aquatic systems are often time-consuming, expensive and non-continuous. Thus, remote sensing technologies are crucial in quantitatively monitoring the status of water quality due to the rapidity, cyclicity, large-scale and low-cost. The aim of this work was to evaluate potential applications of the Landsat 8 Operational Land Imager (OLI) to study the spatio-temporal phytoplankton biomass changes. In this study phytoplankton biomasses are used as a water quality indicator, because phytoplankton communities are sensitive to changes in their environment and directly correlated with eutrophication. We used Landsat 8 OLI (30 m spatial resolution, May, Aug, Sep 2016) images converted to the bottom of atmosphere (BOA) reflectance by performing standard preprocessing steps (radiometric and atmospheric correction, sun glint removal etc.). The nonlinear regression model was developed using Landsat 8 (May 2016) coastal blue, blue, green, red, NIR bands, their ratios (blue/red, red/green, red/blue etc.) and in situ measurements (R2=0.7, p<0.05) performed by the Scientific Center of Zoology and Hydroecology of NAS RA in May 2016. Model was applied to the OLI images received for August and September 2016. The data obtained through the model shows that in May the quantity of phytoplankton mostly varies from 0.2 to 0.6g/m3. In August vs. May a sharp increase in the quantity of phytoplankton around 1-5 g/m3 is observable. In September, very high contents of phytoplankton are observed for almost entire surface of the lake. Preliminary collation between data generated with help of the model and in-situ measurements allows to conclude that the RS model for phytoplankton biomass estimation showed reasonable results, but further validation is necessary.


Drones ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 43
Author(s):  
Bruno Miguez Moreira ◽  
Gabriel Goyanes ◽  
Pedro Pina ◽  
Oleg Vassilev ◽  
Sandra Heleno

This work provides a systematic evaluation of how survey design and computer processing choices (such as the software used or the workflow/parameters chosen) influence unmanned aerial vehicle (UAV)-based photogrammetry retrieval of tree diameter at breast height (DBH), an important 3D structural parameter in forest inventory and biomass estimation. The study areas were an agricultural field located in the province of Málaga, Spain, where a small group of olive trees was chosen for the UAV surveys, and an open woodland area in the outskirts of Sofia, the capital of Bulgaria, where a 10 ha area grove, composed mainly of birch trees, was overflown. A DJI Phantom 4 Pro quadcopter UAV was used for the image acquisition. We applied structure from motion (SfM) to generate 3D point clouds of individual trees, using Agisoft and Pix4D software packages. The estimation of DBH in the point clouds was made using a RANSAC-based circle fitting tool from the TreeLS R package. All trees modeled had their DBH tape-measured on the ground for accuracy assessment. In the first study site, we executed many diversely designed flights, to identify which parameters (flying altitude, camera tilt, and processing method) gave us the most accurate DBH estimations; then, the resulting best settings configuration was used to assess the replicability of the method in the forested area in Bulgaria. The best configuration tested (flight altitudes of about 25 m above tree canopies, camera tilt 60°, forward and side overlaps of 90%, Agisoft ultrahigh processing) resulted in root mean square errors (RMSEs; %) of below 5% of the tree diameters in the first site and below 12.5% in the forested area. We demonstrate that, when carefully designed methodologies are used, SfM can measure the DBH of single trees with very good accuracy, and to our knowledge, the results presented here are the best achieved so far using (above-canopy) UAV-based photogrammetry.


Sign in / Sign up

Export Citation Format

Share Document