scholarly journals SPATIAL AND TEMPORAL CHANGE ANALYSIS OF URBAN HEAT ISLAND EFFECT IN WUHAN CITY

Author(s):  
M. H. Huang ◽  
J. J. Chen

Abstract. China has experienced rapid urbanization and rapid development of economy in the past decades, resulting in severe damage to the urban ecological environment, causing changes in the urban thermal environment and triggering the urban heat island effect. Moreover, the heat island effect has become a hot topic for scholars. The urban heat island effect refers to the phenomenon that the urban surface temperature is significantly higher than that of surrounding suburbs due to the interaction of man-made and natural. The city is considered to be the largest man-made ecosystem. Its heat island effect will not only change the growth habit of urban vegetation, but also affect the outer environment of urban buildings, it further influences human life and has a great negative impact on human health. Therefore, the study of the spatial-temporal variation characteristics of urban heat island effect and its influencing factors can provide data support for the environmental quality control and urban planning of local government departments. Based on the surface temperature remote sensing product data, we studied the spatial distribution characteristics of urban heat island effect in Wuhan from 2001 to 2013, by calculating the temperature difference between the highest and lowest temperatures and the average interval method for heat island classification. We conducted a trend analysis of vegetation cover from 2001 to 2013 initially explore the effects of vegetation cover n heat island effect. The results showed that: (1) From 2001 to 2013, the intensity of heat island in Wuhan was strong in the city center, weaker surrounding city center and the weakest in the suburbs; From 2001 to 2011, the intensity of heat island in Wuhan city was significantly weaken, among which Huangpi, Xinzhou, Jiangxia, Hannan and Caidian district were weaken, and the urban heat island effect of the city center was enhanced; From 2011 to 2013, the intensity of heat island in Wuhan city presented an increasing trend, among which Huangpi district, Xinzhou district and Caidian district were the most obvious, and the urban heat island effect was slightly weaken. (2) Between 2001 and 2013, the vegetation cover in Huangpi district and Xinzhou district increased significantly, and the vegetation cover in the downtown, Jiangxia district and Dongxihu district decreased significantly, corresponding to the urban heat island effect of Wuhan increased volatility. Our results showed that the spatial distribution of urban heat island effect in Wuhan city fluctuated with time during the study period, and the vegetation cover had a significant influence on it.

2018 ◽  
Vol 7 (3.2) ◽  
pp. 597
Author(s):  
Yuri Golik ◽  
Oksana Illiash ◽  
Nataliia Maksiuta

The concept of "heat-island effect", its structure and features of formation over the city are given. The climatic and other features of the city that influence the formation of this phenomenon are mentioned.  The data on functioning in the city of the municipal production enterprise of the heat economy is indicated. The traditional method for determining the formation of the urban "heat-island effect" is described. The data and comparative graphs on the temperature regimes of the city and region are presented. The possibility of influencing architectural features of the city on the formation of the "heat-island-effect" is determined. According to the obtained results, further integrated researches are proposed for obtaining reliable results of the given question. 


2012 ◽  
Vol 34 (9-10) ◽  
pp. 3177-3192 ◽  
Author(s):  
José A. Sobrino ◽  
Rosa Oltra-Carrió ◽  
Guillem Sòria ◽  
Juan Carlos Jiménez-Muñoz ◽  
Belén Franch ◽  
...  

Author(s):  
C. H. Hardy ◽  
A. L. Nel

The city of Johannesburg contains over 10 million trees and is often referred to as an urban forest. The intra-urban spatial variability of the levels of vegetation across Johannesburg’s residential regions has an influence on the urban heat island effect within the city. Residential areas with high levels of vegetation benefit from cooling due to evapo-transpirative processes and thus exhibit weaker heat island effects; while their impoverished counterparts are not so fortunate. The urban heat island effect describes a phenomenon where some urban areas exhibit temperatures that are warmer than that of surrounding areas. The factors influencing the urban heat island effect include the high density of people and buildings and low levels of vegetative cover within populated urban areas. This paper describes the remote sensing data sets and the processing techniques employed to study the heat island effect within Johannesburg. In particular we consider the use of multi-sensorial multi-temporal remote sensing data towards a predictive model, based on the analysis of influencing factors.


2019 ◽  
Vol 11 (10) ◽  
pp. 2759 ◽  
Author(s):  
Chen-Yi Sun ◽  
Soushi Kato ◽  
Zhonghua Gou

In the urban environment, the urban heat island effect, the phenomenon of high temperature in the city relative to the suburbs, has become significant due to a large amount of artificial heat dissipation, rare green spaces, high building density, and a large surface material heat capacity. The study of the urban heat island effect has been carried out for many years. Even though many studies have evolved from the measurement and analysis stage to the improvement of the urban heat island effect, the measurement method is still the most important issue of the studies in this field. Basically, the measurement method of the urban heat island effect intensity has three types: remote sensing, mobile transect observation, and fixed station. In order to achieve the dual purpose of reducing research funding requirements and maintaining the accuracy of research results, this study proposes a way to combine mobile transect observation and fixed station. This study exploits the advantages of mobile transect observation and fixed station, and uses low-cost sensors to achieve the basic purpose of urban heat island effect research. First, in this study, low-cost sensors were mounted on mobile vehicles for more than ten mobile transect observations to identify relatively high temperature and low temperature regions in the city; meanwhile, the low-cost sensors were also placed in a simple fixed station to obtain long-term instantaneous urban temperature data. Furthermore, it is possible to analyze the 24-hour full-time variation of the urban heat island effect. Therefore, the results of this study can not only provide a reference for relevant researchers, but can also serve as an important criterion for government departments to establish an “urban heat island effect monitoring system” to achieve the goal of efficient use of the public budget.


Urban Science ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 66 ◽  
Author(s):  
Doris Österreicher ◽  
Stefan Sattler

The waste heat generated from the use of air conditioning systems in cities significantly contributes to the urban heat island effect (UHI) during the summer months. Thus, one of the key measures to mitigate this effect is to limit the use of active cooling systems. In the city of Vienna, air conditioning units are common in nonresidential buildings, but have so far been much less installed in residential buildings. This is mainly due to the fact that the Viennese summertime climate is still considered to be relatively comfortable and planning guidelines related to energy efficiency are already strict, resulting in high-quality buildings in regard to thermal performance. However, during the last decade, an increase in summertime temperatures and so called “tropical nights” has been recorded in Vienna and subsequently the postconstruction installation of air conditioning systems in residential buildings has significantly increased. In a study undertaken for the City of Vienna, a series of passive design measures have been simulated with current and future climate scenarios in order to determine the most effective combination of architecturally driven actions to avoid the use of air conditioning systems in residential buildings whilst maintaining comfortable indoor temperatures.


2015 ◽  
Vol 118 ◽  
pp. 137-144 ◽  
Author(s):  
Yupeng Wang ◽  
Umberto Berardi ◽  
Hashem Akbari

2019 ◽  
Vol 46 (11) ◽  
pp. 1032-1042 ◽  
Author(s):  
Isabeau Vandemeulebroucke ◽  
Klaas Calle ◽  
Steven Caluwaerts ◽  
Tim De Kock ◽  
Nathan Van Den Bossche

Renovating historical buildings with valuable facades often includes interior retrofitting, perhaps entailing an increased durability risk. However, the urban heat island effect and the ongoing climate change might mitigate the severity of frost action and mould growth. By means of heat air moisture (HAM) simulations in Delphin, this study evaluates interior retrofitting of solid masonry on three scales. First, the sensitivity to the intra-urban climatic differences of the freeze–thaw cycles in Ghent is analysed. Secondly, the spatial pattern of freeze–thaw behaviour across Europe is assessed. Finally, the influence of observed climate change on the European freeze–thaw pattern is investigated. A decreasing number of critical freeze–thaw cycles is found when comparing the rural area with the city centre of Ghent. Furthermore, due to climate change, the number of freeze–thaw cycles across Europe generally decreases as well, except at northern latitudes exposed to increased wind-driven rain loads.


Urban Science ◽  
2017 ◽  
Vol 1 (1) ◽  
pp. 9 ◽  
Author(s):  
Annamária Lehoczky ◽  
José Sobrino ◽  
Dražen Skoković ◽  
Enric Aguilar

Sign in / Sign up

Export Citation Format

Share Document