scholarly journals EFFICIENT TOUR PLANNING FOR A MEASUREMENT VEHICLE BY COMBINING NEXT BEST VIEW AND TRAVELING SALESMAN

Author(s):  
J. Gehrung ◽  
M. Hebel ◽  
M. Arens ◽  
U. Stilla

Abstract. Path planning for a measuring vehicle requires solving two popular problems from computer science, namely the search for the optimal tour and the search for the optimal viewpoint. Combining both problems results in a new variation of the Traveling Salesman Problem, which we refer to as the Explorational Traveling Salesman Problem. The solution to this problem is the optimal tour with a minimum of observations. In this paper, we formulate the basic problem, discuss it in context of the existing literature and present an iterative solution algorithm. We demonstrate how the method can be applied directly to LiDAR data using an occupancy grid. The ability of our algorithm to generate suitably efficient tours is verified based on two synthetic benchmark datasets, utilizing a ground truth determined by an exhaustive search.

Author(s):  
Hoang Xuan Huan ◽  
Nguyen Linh-Trung ◽  
Do Duc Dong ◽  
Huu-Tue Huynh

Ant colony optimization (ACO) techniques are known to be efficient for combinatorial optimization. The traveling salesman problem (TSP) is the benchmark used for testing new combinatoric optimization algorithms. This paper revisits the application of ACO techniques to the TSP and discuss some general aspects of ACO that have been previously overlooked. In fact, it is observed that the solution length does not reflect exactly the quality of a particular edge belong to the solution, but it is only used for relatively evaluating whether the edge is good or bad in the process of reinforcement learning. Based on this observation, we propose two algorithms– Smoothed Max-Min Ant System and Three-Level Ant System– which not only can be easily implemented but also provide better performance, as compared to the well-known Max-Min Ant System. The performance is evaluated by numerical simulation using benchmark datasets.


2007 ◽  
Vol 5 (1) ◽  
pp. 1-9
Author(s):  
Paulo Henrique Siqueira ◽  
Sérgio Scheer ◽  
Maria Teresinha Arns Steiner

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Jin Zhang ◽  
Li Hong ◽  
Qing Liu

The whale optimization algorithm is a new type of swarm intelligence bionic optimization algorithm, which has achieved good optimization results in solving continuous optimization problems. However, it has less application in discrete optimization problems. A variable neighborhood discrete whale optimization algorithm for the traveling salesman problem (TSP) is studied in this paper. The discrete code is designed first, and then the adaptive weight, Gaussian disturbance, and variable neighborhood search strategy are introduced, so that the population diversity and the global search ability of the algorithm are improved. The proposed algorithm is tested by 12 classic problems of the Traveling Salesman Problem Library (TSPLIB). Experiment results show that the proposed algorithm has better optimization performance and higher efficiency compared with other popular algorithms and relevant literature.


1995 ◽  
Vol 43 (2) ◽  
pp. 367-371 ◽  
Author(s):  
Yvan Dumas ◽  
Jacques Desrosiers ◽  
Eric Gelinas ◽  
Marius M. Solomon

Algorithms ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 21
Author(s):  
Christoph Hansknecht ◽  
Imke Joormann ◽  
Sebastian Stiller

The time-dependent traveling salesman problem (TDTSP) asks for a shortest Hamiltonian tour in a directed graph where (asymmetric) arc-costs depend on the time the arc is entered. With traffic data abundantly available, methods to optimize routes with respect to time-dependent travel times are widely desired. This holds in particular for the traveling salesman problem, which is a corner stone of logistic planning. In this paper, we devise column-generation-based IP methods to solve the TDTSP in full generality, both for arc- and path-based formulations. The algorithmic key is a time-dependent shortest path problem, which arises from the pricing problem of the column generation and is of independent interest—namely, to find paths in a time-expanded graph that are acyclic in the underlying (non-expanded) graph. As this problem is computationally too costly, we price over the set of paths that contain no cycles of length k. In addition, we devise—tailored for the TDTSP—several families of valid inequalities, primal heuristics, a propagation method, and a branching rule. Combining these with the time-dependent shortest path pricing we provide—to our knowledge—the first elaborate method to solve the TDTSP in general and with fully general time-dependence. We also provide for results on complexity and approximability of the TDTSP. In computational experiments on randomly generated instances, we are able to solve the large majority of small instances (20 nodes) to optimality, while closing about two thirds of the remaining gap of the large instances (40 nodes) after one hour of computation.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Ramin Bazrafshan ◽  
Sarfaraz Hashemkhani Hashemkhani Zolfani ◽  
S. Mohammad J. Mirzapour Al-e-hashem

There are many sub-tour elimination constraint (SEC) formulations for the traveling salesman problem (TSP). Among the different methods found in articles, usually three apply more than others. This study examines the Danzig–Fulkerson–Johnson (DFJ), Miller–Tucker–Zemlin (MTZ), and Gavish–Graves (GG) formulations to select the best asymmetric traveling salesman problem (ATSP) formulation. The study introduces five criteria as the number of constraints, number of variables, type of variables, time of solving, and differences between the optimum and the relaxed value for comparing these constraints. The reason for selecting these criteria is that they have the most significant impact on the mathematical problem-solving complexity. A new and well-known multiple-criteria decision making (MCDM) method, the simultaneous evaluation of the criteria and alternatives (SECA) method was applied to analyze these criteria. To use the SECA method for ranking the alternatives and extracting information about the criteria from constraints needs computational computing. In this research, we use CPLEX 12.8 software to compute the criteria value and LINGO 11 software to solve the SECA method. Finally, we conclude that the Gavish–Graves (GG) formulation is the best. The new web-based software was used for testing the results.


Sign in / Sign up

Export Citation Format

Share Document