scholarly journals EVALUATING STEREO DTM QUALITY AT JEZERO CRATER, MARS WITH HRSC, CTX, AND HIRISE IMAGES

Author(s):  
R. L. Kirk ◽  
R. L. Fergason ◽  
B. Redding ◽  
D. Galuszka ◽  
E. Smith ◽  
...  

Abstract. We have used a high-precision, high-resolution digital terrain model (DTM) of the NASA Mars 2020 rover Perseverance landing site in Jezero crater based on mosaicked images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (MRO HiRISE) camera as a reference dataset to evaluate DTMs based on Mars Express High Resolution Stereo Camera (MEX HRSC) and MRO Context camera (CTX) images. Results are consistent with our earlier HRSC-HiRISE comparisons at the Mars Science Laboratory (MSL) Curiosity landing site in Gale crater, confirming that those results were not compromised by the small area compared and potential problems with spatial registration. Specifically, height errors are on the order of half a pixel and correspond to an image matching error of 0.2–0.3 pixel but estimates of horizontal resolution are 10–20 pixels. Products from the HRSC team pipeline at DLR are smoother but more precise vertically than those produced by using the commercial stereo package SOCET SET®. The DLR products are also homogenous in quality, whereas the SOCET products are less smoothed and have higher errors in rougher terrain. Despite this weak variation, our results are consistent with a rule of thumb of 0.2–0.3 pixel matching precision based on many prior studies. Horizontal resolution is significantly coarser than the DTM ground sample distance (GSD), which is typically 3–5 pixels.

2021 ◽  
Vol 13 (17) ◽  
pp. 3511
Author(s):  
Randolph L. Kirk ◽  
David P. Mayer ◽  
Robin L. Fergason ◽  
Bonnie L. Redding ◽  
Donna M. Galuszka ◽  
...  

We have used high-resolution digital terrain models (DTMs) of two rover landing sites based on mosaicked images from the High-Resolution Imaging Science Experiment (HiRISE) camera as a reference to evaluate DTMs based on High-Resolution Stereo Camera (HRSC) and Context Camera (CTX) images. The Next-Generation Automatic Terrain Extraction (NGATE) matcher in the SOCET SET and GXP® commercial photogrammetric systems produces DTMs with good (small) horizontal resolution but large vertical error. Somewhat surprisingly, results for NGATE are terrain dependent, with poorer resolution and smaller errors on smoother surfaces. Multiple approaches to smoothing the NGATE DTMs give similar tradeoffs between resolution and error; a 5 × 5 lowpass filter is near optimal in terms of both combined resolution-error performance and local slope estimation. Smoothing with an area-based matcher, the standard processing for U.S. Geological Survey planetary DTMs, yields similar errors to the 5 × 5 filter at slightly worse resolution. DTMs from the HRSC team processing pipeline fall within this same trade space but are less sensitive to terrain roughness. DTMs produced with the Ames Stereo Pipeline also fall in this space at resolutions intermediate between NGATE and the team pipeline. Considered individually, resolution and error each varied by approximately a factor of 2. Matching errors were 0.2–0.5 pixels but most results fell in the 0.2–0.3 pixel range that has been stated as a rule of thumb in multiple prior studies. Horizontal resolutions of 10–20 image pixels were found, consistently greater than the 3–5 pixel spacing generally used for stereo DTM production. Resolution and precision were inversely correlated; their product varied by ≤20% (4–5 pixels squared). Refinement of the stereo DTM by photoclinometry can yield quantitative improvement in resolution (more than a factor of 2), provided that albedo variations over distances smaller than the stereo DTM resolution are not too severe. We offer specific guidance for both producers and users of planetary stereo DTMs, based on our results.


2019 ◽  
Vol 632 ◽  
pp. L4 ◽  
Author(s):  
F. Preusker ◽  
F. Scholten ◽  
S. Elgner ◽  
K.-D. Matz ◽  
S. Kameda ◽  
...  

A high-resolution 3D surface model, map-projected to a digital terrain model (DTM), and precisely ortho-rectified context images (orthoimages) of MASCOT landing site area are important data sets for the scientific analysis of relevant data that have been acquired with MASCOT’s image camera system MASCam and other instruments (e.g., the radiometer MARA and the magnetometer MASMag). We performed a stereo-photogrammetric (SPG) analysis of 1050 images acquired from the Hayabusa2 Optical Navigation Camera system (ONC) during the asteroid characterization phase and the MASCOT release phase in early October 2018 to construct a photogrammetric control point network of asteroid (162173) Ryugu. We validated existing rotational parameters for Ryugu and improved the camera orientation (position and pointing) of the ONC images to decimeter accuracy using SPG bundle block adjustment. We produced a high-resolution DTM of the entire MASCOT landing site area. Finally, based on this DTM, a set of orthoimages from the highest-resolution ONC images around MASCOT’s final rest position complements the results of this analysis.


2021 ◽  
Vol 13 (11) ◽  
pp. 2185
Author(s):  
Yu Tao ◽  
Sylvain Douté ◽  
Jan-Peter Muller ◽  
Susan J. Conway ◽  
Nicolas Thomas ◽  
...  

We introduce a novel ultra-high-resolution Digital Terrain Model (DTM) processing system using a combination of photogrammetric 3D reconstruction, image co-registration, image super-resolution restoration, shape-from-shading DTM refinement, and 3D co-alignment methods. Technical details of the method are described, and results are demonstrated using a 4 m/pixel Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) panchromatic image and an overlapping 6 m/pixel Mars Reconnaissance Orbiter Context Camera (CTX) stereo pair to produce a 1 m/pixel CaSSIS Super-Resolution Restoration (SRR) DTM for different areas over Oxia Planum on Mars—the future ESA ExoMars 2022 Rosalind Franklin rover’s landing site. Quantitative assessments are made using profile measurements and the counting of resolvable craters, in comparison with the publicly available 1 m/pixel High-Resolution Imaging Experiment (HiRISE) DTM. These assessments demonstrate that the final resultant 1 m/pixel CaSSIS DTM from the proposed processing system has achieved comparable and sometimes more detailed 3D reconstruction compared to the overlapping HiRISE DTM.


Author(s):  
J. Liu ◽  
X. Ren ◽  
L. Mu ◽  
F. Wang ◽  
W. Wang ◽  
...  

At 13:11 (GMT) December 14, 2013 Chang’e 3 (CE-3) successfully landed at 19.51° W, 44.12° N northwestern Mare Imbrium on the Moon, making it China's first planetary mission to land on a celestial body other than Earth. CE-3 explore comprises a lander and a rover. It carries eight scientific instruments onboard, including the descent camera on the lander, and the panoramic camera on the rover. These cameras imaged the topographic features around the landing site. This paper mainly presents the digital terrain model reconstruction techniques for the panoramic camera. Image pairs obtained during the first lunar day are used to reconstructed 3D Digital Terrain Models of 0.02 m resolution near observation points E and S3. The maps have been extensively used to support Yutu operations and strategic planning of the mission. The preliminary scientific exploration planning of the Yutu rover for the second lunar day has been made.


Author(s):  
R. L. Kirk ◽  
D. Mayer ◽  
B. L. Redding ◽  
D. M. Galuszka ◽  
R. L. Fergason ◽  
...  

Abstract. We have used high-precision, high-resolution digital terrain models (DTMs) of the NASA Mars Science Laboratory and Mars 2020 rover landing sites based on mosaicked images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (MRO HiRISE) camera as a reference data set to evaluate DTMs based on Mars Express High Resolution Stereo Camera (MEX HRSC) images. The Next Generation Automatic Terrain Extraction (NGATE) matcher in the SOCET SET/GXP® commercial photogram- metric system produces DTMs with relatively good (small) horizontal resolution but high error, and results are terrain dependent, with poorer resolution and smaller errors on smoother surfaces. Multiple approaches to smoothing the NGATE DTMs give very similar tradeoffs between resolution and error. Smoothing the NGATE DTMs with a 5x5 lowpass filter is near optimal in terms of both combined resolution-error performance and local slope estimation, but smoothing with a single pass of an area-based matcher, which has been the standard approach for generating planetary DTMs at the U.S. Geological Survey to date results in similar errors and only slightly worse resolution. DTMs from the HRSC team processing pipeline fall within this same trade space but are less sensitive to terrain roughness. DTMs produced with the Ames Stereo Pipeline also fall in this space at resolutions intermediate between NGATE and the team pipeline. Although DTM resolution and error each vary by a factor of 2, the product of resolution and error is much more consistent, varying by ≤20% across multiple image sets and matching algorithms. Refinement of the stereo DTM by photoclinometry can yield significant quantitative improvement in resolution and some improvement in error (improving their product by as much as a factor of 2), provided that albedo variations over distances smaller than the stereo DTM resolution are not too severe.


2018 ◽  
Vol 90 (2 suppl 1) ◽  
pp. 2001-2010 ◽  
Author(s):  
ADRIANO L. SCHÜNEMANN ◽  
PEDRO HENRIQUE A. ALMEIDA ◽  
ANDRÉ THOMAZINI ◽  
ELPÍDIO I. FERNANDES FILHO ◽  
MÁRCIO R. FRANCELINO ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2651 ◽  
Author(s):  
Gaia Mattei ◽  
Pietro Aucelli ◽  
Claudia Caporizzo ◽  
Angela Rizzo ◽  
Gerardo Pappone

This research aims to present new data regarding the relative sea-level variations and related morpho-evolutive trends of Naples coast since the mid-Holocene, by interpreting several geomorphological and historical elements. The geomorphological analysis, which was applied to the emerged and submerged sector between Chiaia plain and Pizzofalcone promontory, took into account a dataset that is mainly composed of: measurements from direct surveys; bibliographic data from geological studies; historical sources; ancient pictures and maps; high-resolution digital terrain model (DTM) from Lidar; and, geo-acoustic and optical data from marine surveys off Castel dell’ Ovo carried out by using an USV (Unmanned Surface Vehicle). The GIS analysis of those data combined with iconographic researches allowed for reconstructing the high-resolution geomorphological map and three new palaeoenvironmental scenarios of the study area during the Holocene, deriving from the evaluation of the relative sea-level changes and vertical ground movements of volcano-tectonic origin affecting the coastal sector in the same period. In particular, three different relative sea-level stands were identified, dated around 6.5, 4.5, and 2.0 ky BP, respectively at +7, −5, and −3 m MSL, due to the precise mapping of several paleo-shore platforms that were ordered based on the altimetry and dated thanks to archaeological and geological interpretations.


Sign in / Sign up

Export Citation Format

Share Document