scholarly journals HIGH-PERFORMANCE VISUALIZATION OF UAS SENSOR AND IMAGE DATA WITH RASTER MAPS AND TOPOGRAPHY IN 3D

Author(s):  
D. Stødle ◽  
N. T. Borch ◽  
R. Storvold
2014 ◽  
Vol 5 (3) ◽  
pp. 244-262 ◽  
Author(s):  
Daniel Stødle ◽  
Njål T. Borch ◽  
Stian A. Solbø ◽  
Rune Storvold

Author(s):  
Stefan Eilemann ◽  
Marwan Abdellah ◽  
Nicolas Antille ◽  
Ahmet Bilgili ◽  
Grigory Chevtchenko ◽  
...  

Author(s):  
Obed Appiah ◽  
James Benjamin Hayfron-Acquah ◽  
Michael Asante

For computer vision systems to effectively perform diagnoses, identification, tracking, monitoring and surveillance, image data must be devoid of noise. Various types of noises such as Salt-and-pepper or Impulse, Gaussian, Shot, Quantization, Anisotropic, and Periodic noises corrupts images making it difficult to extract relevant information from them. This has led to a lot of proposed algorithms to help fix the problem. Among the proposed algorithms, the median filter has been successful in handling salt-and-pepper noise and preserving edges in images. However, its moderate to high running time and poor performance when images are corrupted with high densities of noise, has led to various proposed modifications of the median filter. The challenge observed with all these modifications is the trade-off between efficient running time and quality of denoised images. This paper proposes an algorithm that delivers quality denoised images in low running time. Two state-of-the-art algorithms are combined into one and a technique called Mid-Value-Decision-Median introduced into the proposed algorithm to deliver high quality denoised images in real-time. The proposed algorithm, High-Performance Modified Decision Based Median Filter (HPMDBMF) runs about 200 times faster than the state-of-the-art Modified Decision Based Median Filter (MDBMF) and still generate equivalent output.


10.14311/981 ◽  
2008 ◽  
Vol 48 (3) ◽  
Author(s):  
S. Gross ◽  
T. Stehle

Imaging technology is highly important in today’s medical environments. It provides information upon which the accuracy of the diagnosis and consequently the wellbeing of the patient rely. Increasing the quality and significance of medical image data is therefore one the aims of scientific research and development. We introduce an integrated hardware and software framework for real time image processing in medical environments, which we call RealTimeFrame. Our project is designed to offer flexibility, easy expandability and high performance. We use standard personal computer hardware to run our multithreaded software. A frame grabber card is used to capture video signals from medical imaging systems. A modular, user-defined process chain performs arbitrary manipulations on the image data. The graphical user interface offers configuration options and displays the processed image in either window or full screen mode. Image source and processing routines are encapsulated in dynamic library modules for easy functionality extension without recompilation of the entire software framework. Documented template modules for sources and processing steps are part of the software’s source code.


2021 ◽  
Author(s):  
Matthias Arzt ◽  
Joran Deschamps ◽  
Christopher Schmied ◽  
Tobias Pietzsch ◽  
Deborah Schmidt ◽  
...  

We present Labkit, a user-friendly Fiji plugin for the segmentation of microscopy image data. It offers easy to use manual and automated image segmentation routines that can be rapidly applied to single- and multi-channel images as well as to timelapse movies in 2D or 3D. Labkit is specifically designed to work efficiently on big image data and enables users of consumer laptops to conveniently work with multiple-terabyte images. This efficiency is achieved by using ImgLib2 and BigDataViewer as the foundation of our software. Furthermore, memory efficient and fast random forest based pixel classification inspired by the Waikato Environment for Knowledge Analysis (Weka) is implemented. Optionally we harness the power of graphics processing units (GPU) to gain additional runtime performance. Labkit is easy to install on virtually all laptops and workstations. Additionally, Labkit is compatible with high performance computing (HPC) clusters for distributed processing of big image data. The ability to use pixel classifiers trained in Labkit via the ImageJ macro language enables our users to integrate this functionality as a processing step in automated image processing workflows. Last but not least, Labkit comes with rich online resources such as tutorials and examples that will help users to familiarize themselves with available features and how to best use \Labkit in a number of practical real-world use-cases.


Author(s):  
W. W. Song ◽  
B. X. Jin ◽  
S. H. Li ◽  
X. Y. Wei ◽  
D. Li ◽  
...  

Traditional geospatial information platforms are built, managed and maintained by the geoinformation agencies. They integrate various geospatial data (such as DLG, DOM, DEM, gazetteers, and thematic data) to provide data analysis services for supporting government decision making. In the era of big data, it is challenging to address the data- and computing- intensive issues by traditional platforms. In this research, we propose to build a spatiotemporal cloud platform, which uses HDFS for managing image data, and MapReduce-based computing service and workflow for high performance geospatial analysis, as well as optimizing auto-scaling algorithms for Web client users’ quick access and visualization. Finally, we demonstrate the feasibility by several GIS application cases.


Sign in / Sign up

Export Citation Format

Share Document