scholarly journals Research on Monitoring the Wetland Landcover Change Based on the Moderate Resolution Remote Sensing Image

Author(s):  
M Zhou ◽  
X. Yuan ◽  
L. Sun

Wetland is important natural resource. The main method to monitor the landcover change in wetland natural reserve is to extract and analyze information from remote sensing image. In this paper, the landcover information is extracted, summarized and analyzed by using multi-temporal HJ and Landsat satellite image in Zhalong natural reserve, Heilongjiang, China. The method can monitor the wetland landcover change accurately in real time and long term. This paper expounds the natural factors and human factors influence on wetland land use type, for scientific and effective support for the development of the rational use of wetlands in Zhalong natural wetland reserve.

Author(s):  
Y. Ni ◽  
G. He ◽  
W. Jiang

Cloud and Shadow removal is a significant step in remote sensing image process. As we all know, the ground object coverage type of the same area of the remote sensing image has little change in the short term. But for cloud and shadow coverage areas, the ground object coverage type has large change. Therefore, according to the difference between the two Landsat / OLI images caused by changes in the cover, this paper presents a method of extracting clouds and shadows based on differences in luminance values. This method selects two thresholds for the difference of brightness values, and extracts the clouds and shadows respectively, and validates them with random point method, which can obtain high precision of extracting cloud and shadow and satisfy the actual application needs.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1430
Author(s):  
V. M. Fernández-Pacheco ◽  
C. A. López-Sánchez ◽  
E. Álvarez-Álvarez ◽  
M. J. Suárez López ◽  
L. García-Expósito ◽  
...  

Air pollution is one of the major environmental problems, especially in industrial and highly populated areas. Remote sensing image is a rich source of information with many uses. This paper is focused on estimation of air pollutants using Landsat-5 TM and Landsat-8 OLI satellite images. Particulate Matter with particle size less than 10 microns (PM10) is estimated for the study area of Principado de Asturias (Spain). When a satellite records the radiance of the surface received at sensor, does not represent the true radiance of the surface. A noise caused by Aerosol and Particulate Matters attenuate that radiance. In many applications of remote sensing, that noise called path radiance is removed during pre-processing. Instead, path radiance was used to estimate the PM10 concentration in the air. A relationship between the path radiance and PM10 measurements from ground stations has been established using Random Forest (RF) algorithm and a PM10 map was generated for the study area. The results show that PM10 estimation through satellite image is an efficient technique and it is suitable for local and regional studies.


2020 ◽  
Author(s):  
Sigrid Roessner ◽  
Robert Behling ◽  
Mahdi Motagh ◽  
Hans Ulrich-wetzel

<p>Landslides represent a worldwide natural hazard and often occur as cascading effects related to triggering events, such as earthquakes and hydrometeorological extremes. Recent examples are the Kaikoura earthquake in New Zealand (November 2016), the Gorkha earthquake in Nepal (April/May 2015), and the Typhoon Morakot in Taiwan (August 2009) as well as less intense rainfall events persisting over unusually long periods of time as observed for Central Asia (spring 2017) and Iran (spring 2019). Each of these events has caused thousands of landslides that account substantially to the primary disaster’s impact. Moreover, their initial failure usually represents the onset of long-term progressing slope destabilization leading to multiple reactivations and thus to long-term increased hazard and risk. Therefore, regular systematic high-resolution monitoring of landslide prone regions is of key importance for characterization, understanding and modelling of spatiotemporal landslide evolution in the context of different triggering and predisposing settings. Because of the large extent of the affected areas of up to several ten thousands km<sup>2</sup>, the use of multi-temporal and multi-scale remote sensing methods is of key importance for large area process analysis. In this context, new opportunities have opened up with the increasing availability of satellite remote sensing data of suitable spatial and temporal resolution (Sentinels, Planet) as well as the advances in UAV based very high resolution monitoring and mapping.</p><p>During the last decade, we have been pursuing extensive methodological developments in remote sensing based time series analysis including optical and radar observations with the goal of performing large area and at the same time detailed spatiotemporal analysis of landslide prone regions. These developments include automated post-failure landslide detection and mapping as well as assessment of the kinematics of pre- and post-failure slope evolution.  Our combined optical and radar remote sensing approaches aim at an improved understanding of spatiotemporal dynamics and complexities related to evolution of landslide prone slopes at different spatial and temporal scales.  In this context, we additionally integrate UAV-based observation for deriving volumetric changes also related to globally available DEM products, such as SRTM and ALOS.  </p><p>We present results for selected settings comprising large area co-seismic landslide occurrence related to the Kaikoura 2016 and the Nepal 2015 earthquakes. For the latter one we also analyzed annual pre- and post-seismic monsoon related landslide activity contributing to a better understanding of the interplay between these main triggering factors. Moreover, we report on ten years of large area systematic landslide monitoring in Southern Kyrgyzstan resulting in a multi-temporal regional landslide inventory of so far unprecedented spatiotemporal detail and completeness forming the basis for further analysis of the obtained landslide concentration patterns. We also present first results of our analysis of landslides triggered by intense rainfall and flood events in spring of 2019 in the North of Iran. We conclude that in all cases, the obtained results are crucial for improved landslide prediction and reduction of future landslide impact. Thus, our methodological developments represent an important contribution towards improved hazard and risk assessment as well as rapid mapping and early warning</p>


2013 ◽  
Vol 333-335 ◽  
pp. 1475-1478
Author(s):  
Zhi Hong Liu ◽  
Xing Ke Yang ◽  
Qian Zhu ◽  
Hu Jun He ◽  
San You Cheng

Analyzing the significance of macroscopically dynamic monitoring of newly increased construction land, and considering the influence of various factors, this paper selects central Shaanxi Plain in Northwestern region for a typical experimental zone, setting up knowledge base of remote sensing images interpretation, using multi-temporal remote sensing images, carrying through interactive interpretation of change patterns spots of newly increased construction land and field validation. Results of middle resolution remote sensing image interpretation are compared, analyzed. Additionally, interpretation accuracy of different scales are studied, especially between middle resolution 10 ms ALOS remote sensing image and panchromatic high resolution remote sensing, on newly increased construction land in northwestern plains, to find out the remote sensing images which can not only quickly extract new construction land change patterns spots, but also can satisfy precision requirement of the business.


Author(s):  
Thu Trang Hoang ◽  
Khoi Nguyen Dao ◽  
Loi Thi Pham ◽  
Hong Van Nguyen

The objective of this study was to analyze the changes of riverbanks in Ho Chi Minh City for the period 1989-2015 using remote sensing and GIS. Combination of Modified Normalized Difference Water Index (MNDWI) and thresholding method was used to extract the river bank based on the multi-temporal Landsat satellite images, including 12 Landsat 4-5 (TM) images and 2 Landsat 8 images in the period 1989-2015. Then, DSAS tool was used to calculate the change rates of river bank. The results showed that, the processes of erosion and accretion intertwined but most of the main riverbanks had erosion trend in the period 1989-2015. Specifically, the Long Tau River, Sai Gon River, Soai Rap River had erosion trends with a rate of about 10.44 m/year. The accretion process mainly occurred in Can Gio area, such as Dong Tranh river and Soai Rap river with a rate of 8.34 m/year. Evaluating the riverbank changes using multi-temporal remote sensing data may contribute an important reference to managing and protecting the riverbanks.


Sign in / Sign up

Export Citation Format

Share Document