scholarly journals Integrated sea storm management strategy: the 29 October 2018 event in the Adriatic Sea

2020 ◽  
Vol 20 (1) ◽  
pp. 73-93 ◽  
Author(s):  
Christian Ferrarin ◽  
Andrea Valentini ◽  
Martin Vodopivec ◽  
Dijana Klaric ◽  
Giovanni Massaro ◽  
...  

Abstract. Addressing coastal risks related to sea storms requires an integrative approach which combines monitoring stations, forecasting models, early warning systems, and coastal management and planning. Such great effort is sometimes possible only through transnational cooperation, which becomes thus vital to face, effectively and promptly, the marine events which are responsible for damage impacting the environment and citizens' life. Here we present a shared and interoperable system to allow a better exchange of and elaboration on information related to sea storms among countries. The proposed integrated web system (IWS) is a combination of a common data system for sharing ocean observations and forecasts, a multi-model ensemble system, a geoportal, and interactive geo-visualisation tools to make results available to the general public. The multi-model ensemble mean and spread for sea level height and wave characteristics are used to describe three different sea condition scenarios. The IWS is designed to provide sea state information required for issuing coastal risk alerts over the analysed region as well as for being easily integrated into existing local early warning systems. This study describes the application of the developed system to the exceptional storm event of 29 October 2018 that caused severe flooding and damage to coastal infrastructure in the Adriatic Sea. The forecasted ensemble products were successfully compared with in situ observations. The hazards estimated by integrating IWS results in existing early warning systems were confirmed by documented storm impacts along the coast of Slovenia, Emilia-Romagna and the city of Venice. For the investigated event, the most severe simulated scenario results provide a realistic and conservative estimation of the peak storm conditions to be used in coastal risk management.

2019 ◽  
Author(s):  
Christian Ferrarin ◽  
Andrea Valentini ◽  
Martin Vodopivec ◽  
Dijana Klaric ◽  
Giovanni Massaro ◽  
...  

Abstract. Addressing coastal risks related to sea storms requires an integrative approach which combines monitoring stations, forecasting models, early warning systems and coastal management and planning. Such great effort is sometimes possible only through transnational cooperation, which becomes thus vital to face effectively and promptly these marine events which are responsible for several damages impacting on the environment and citizens' life. Here we present a shared and interoperable system to allow a better exchange and elaboration of information related to sea storms among countries. The proposed Integrated Web System (IWS) is a combination of a common data system for sharing ocean observations and forecasts, a multi-model ensemble system, a geoportal and interactive geo-visualization tools to make results available to the general public. Multi-model ensemble mean and spread for sea level height and wave characteristics are used to describe three different sea condition scenarios. IWS is designed to provide sea state information required for issuing coastal risk alerts over the analysed region, as well as for being easily integrated into existing local early warning systems. This study describes the application of the developed system to the exceptional storm event of 29th of October 2018, that caused severe flooding and damages to coastal infrastructures in the Adriatic Sea. The forecasted ensemble products were successfully compared with in situ observations. The hazards estimated by integrating IWS results into existing early warning systems were confirmed by documented storm impacts along the coast of Slovenia, Emilia-Romagna and the City of Venice. For the investigated event, the most severe simulated scenario resulted to provide a realistic and conservative estimation of the peak storm conditions to be used in coastal risk management.


2014 ◽  
Vol 1 (34) ◽  
pp. 18 ◽  
Author(s):  
Vicente Gracia ◽  
Manuel García-León ◽  
Agustín Sánchez-Arcilla ◽  
Jeremy Gault ◽  
Pere Oller ◽  
...  

1995 ◽  
Vol 34 (05) ◽  
pp. 518-522 ◽  
Author(s):  
M. Bensadon ◽  
A. Strauss ◽  
R. Snacken

Abstract:Since the 1950s, national networks for the surveillance of influenza have been progressively implemented in several countries. New epidemiological arguments have triggered changes in order to increase the sensitivity of existent early warning systems and to strengthen the communications between European networks. The WHO project CARE Telematics, which collects clinical and virological data of nine national networks and sends useful information to public health administrations, is presented. From the results of the 1993-94 season, the benefits of the system are discussed. Though other telematics networks in this field already exist, it is the first time that virological data, absolutely essential for characterizing the type of an outbreak, are timely available by other countries. This argument will be decisive in case of occurrence of a new strain of virus (shift), such as the Spanish flu in 1918. Priorities are now to include other existing European surveillance networks.


10.1596/29269 ◽  
2018 ◽  
Author(s):  
Ademola Braimoh ◽  
Bernard Manyena ◽  
Grace Obuya ◽  
Francis Muraya

2005 ◽  
Author(s):  
Willian H. VAN DER Schalie ◽  
David E. Trader ◽  
Mark W. Widder ◽  
Tommy R. Shedd ◽  
Linda M. Brennan

Sign in / Sign up

Export Citation Format

Share Document