scholarly journals Bayesian Network Model for Flood Forecasting Based on Atmospheric Ensemble Forecasts

Author(s):  
Leila Goodarzi ◽  
Mohammad Ebrahim Banihabib ◽  
Abbas Roozbahani ◽  
Jörg Dietrich

Abstract. The purpose of this study is to propose the Bayesian Network (BN) model to estimate flood peak from Atmospheric Ensemble Forecasts (AEFs). The Weather Research and Forecasting model was used to simulate historic storms using five cumulus parameterization schemes. The BN model was trained to forecast flood peak from AEFs. Mean Absolute Relative Error was calculated as 0.076 for validation data while it was calculated as 0.39 in artificial neural network (ANN) as a widely used model. It seems that BN is less sensitive to small data set, thus it is more suited for forecasting flood peak than ANN.

2019 ◽  
Vol 19 (11) ◽  
pp. 2513-2524 ◽  
Author(s):  
Leila Goodarzi ◽  
Mohammad E. Banihabib ◽  
Abbas Roozbahani ◽  
Jörg Dietrich

Abstract. The purpose of this study is to propose the Bayesian network (BN) model to estimate flood peaks from atmospheric ensemble forecasts (AEFs). The Weather Research and Forecasting (WRF) model was used to simulate historic storms using five cumulus parameterization schemes. The BN model was trained to compute flood peak forecasts from AEFs and hydrological pre-conditions. The mean absolute relative error was calculated as 0.076 for validation data. An artificial neural network (ANN) was applied for the same problem but showed inferior performance with a mean absolute relative error of 0.39. It seems that BN is less sensitive to small data sets, thus it is more suited for flood peak forecasting than ANN.


2009 ◽  
Vol 35 (8) ◽  
pp. 1063-1070 ◽  
Author(s):  
Shuang-Cheng WANG ◽  
Cui-Ping LENG ◽  
Xiao-Lin LI

2012 ◽  
Vol 2012 ◽  
pp. 1-17
Author(s):  
Mingmin Zhu ◽  
Sanyang Liu

Learning Bayesian network (BN) structure from data is a typical NP-hard problem. But almost existing algorithms have the very high complexity when the number of variables is large. In order to solve this problem(s), we present an algorithm that integrates with a decomposition-based approach and a scoring-function-based approach for learning BN structures. Firstly, the proposed algorithm decomposes the moral graph of BN into its maximal prime subgraphs. Then it orientates the local edges in each subgraph by the K2-scoring greedy searching. The last step is combining directed subgraphs to obtain final BN structure. The theoretical and experimental results show that our algorithm can efficiently and accurately identify complex network structures from small data set.


2010 ◽  
Vol 25 (1) ◽  
pp. 61-78 ◽  
Author(s):  
Ryan D. Torn

Abstract An ensemble Kalman filter (EnKF) coupled to the Advanced Research version of the Weather Research and Forecasting (WRF) model is used to generate ensemble analyses and forecasts of a strong African easterly wave (AEW) during the African Monsoon Multidisciplinary Analysis field campaign. Ensemble sensitivity analysis is then used to evaluate the impacts of initial condition errors on AEW amplitude and position forecasts at two different initialization times. WRF forecasts initialized at 0000 UTC 8 September 2006, prior to the amplification of the AEW, are characterized by large variability in evolution as compared to forecasts initialized 48 h later when the AEW is within a denser observation network. Short-lead-time amplitude forecasts are most sensitive to the midtropospheric meridional winds, while at longer lead times, midtropospheric θe errors have equal or larger impacts. For AEW longitude forecasts, the largest sensitivities are associated with the θe downstream of the AEW and, to a lesser extent, the meridional winds. Ensemble predictions of how initial condition errors impact the AEW amplitude and position compare qualitatively well with perturbed integrations of the WRF model. Much of the precipitation associated with the AEW is generated by the Kain–Fritsch cumulus parameterization, thus the initial-condition sensitivities are also computed for ensemble forecasts that employ the Betts–Miller–Janjić and Grell cumulus parameterization schemes, and for a high-resolution nested domain with explicit convection, but with the same initial conditions. While the 12-h AEW amplitude forecast is characterized by consistent initial-condition sensitivity among the different schemes, there is greater variability among methods beyond 24 h. In contrast, the AEW longitude forecast is sensitive to the downstream thermodynamic profile with all cumulus schemes.


Author(s):  
Mohammad Arabnia ◽  
Wahid Ghaly

The flow in modern turbines is highly three dimensional and fairly complex. This paper presents a practical and effective optimization approach to minimize 3D-related flow losses by re-staggering and re-stacking the blades. This approach is applied to the redesign of a low speed high subsonic single stage turbine, that was designed and tested in Hannover, Germany. The optimization is performed at the design point and the objective function is given by a weighted sum of individual objectives, namely stage efficiency and streamwise vorticity downstream of the rotor and stator, and is penalized with one constraint, namely the design mass flow rate. A Genetic Algorithm (GA) is coupled with a Response Surface Approximation (RSA) of the Artificial Neural Network (ANN) type. A relatively small data set of high fidelity 3D flow simulations that is obtained using Fluent, is used to train and test the ANN model. The variation of stagger angle and stacking are parametrically represented using a quadratic rational Bezier curve (QRBC). The QRBC parameters are directly related to the design variables, namely the rotor and stator lean & sweep angles, and their stagger distribution. Moreover, it results in eliminating infeasible shapes and in reducing the number of design variables to a minimum while providing a wide design space for the blade shape. This optimization approach results in an improvement of 1.74% to 1.91% in stage efficiency. This optimization approach is found to be helpful in understanding the physical implications of the design variables and in interpreting their effect on the stage performance.


Author(s):  
Mohamad Sakizadeh ◽  
Hassan Rahmatinia

The objective of this study was to consider the efficiency of support vector machine (SVM) and artificial neural network (ANN) for the classification and prediction of groundwater quality using a small data record in Malayer, Iran. For this purpose, 14 groundwater quality variables that had been collected from 27 groundwater sampling wells were used. Cluster analysis discriminated the total sampling stations into two groups. The classification was implemented by SVM using polynomial and RBF kernel methods. The respective sensitivity and specificity of this model were 0.89 and 0.80 while that of positive predictive value and negative predictive value were 0.89 and 0.86, respectively. The prediction of water quality index (WQI) was implemented using ANN. Despite the high correlation coefficient between the predicted and observed values of WQI(r = 0.90), the generalization ability of this model was low(r = 0.60) indicating the over-fitting of the model to the training data set.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 24979-24989
Author(s):  
Yongyan Hou ◽  
Enrang Zheng ◽  
Wenqiang Guo ◽  
Qinkun Xiao ◽  
Ziwei Xu

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2012 ◽  
Vol 197 ◽  
pp. 271-277
Author(s):  
Zhu Ping Gong

Small data set approach is used for the estimation of Largest Lyapunov Exponent (LLE). Primarily, the mean period drawback of Small data set was corrected. On this base, the LLEs of daily qualified rate time series of HZ, an electronic manufacturing enterprise, were estimated and all positive LLEs were taken which indicate that this time series is a chaotic time series and the corresponding produce process is a chaotic process. The variance of the LLEs revealed the struggle between the divergence nature of quality system and quality control effort. LLEs showed sharp increase in getting worse quality level coincide with the company shutdown. HZ’s daily qualified rate, a chaotic time series, shows us the predictable nature of quality system in a short-run.


Sign in / Sign up

Export Citation Format

Share Document