scholarly journals Reliability of regional climate model simulations of extremes and of long-term climate

2004 ◽  
Vol 4 (3) ◽  
pp. 417-431 ◽  
Author(s):  
U. Böhm ◽  
M. Kücken ◽  
D. Hauffe ◽  
F.-W. Gerstengarbe ◽  
P. C. Werner ◽  
...  

Abstract. We present two case studies that demonstrate how a common evaluation methodology can be used to assess the reliability of regional climate model simulations from different fields of research. In Case I, we focused on the agricultural yield loss risk for maize in Northeastern Brazil during a drought linked to an El-Niño event. In Case II, the present-day regional climatic conditions in Europe for a 10-year period are simulated. To comprehensively evaluate the model results for both kinds of investigations, we developed a general methodology. On its basis, we elaborated and implemented modules to assess the quality of model results using both advanced visualization techniques and statistical algorithms. Besides univariate approaches for individual near-surface parameters, we used multivariate statistics to investigate multiple near-surface parameters of interest together. For the latter case, we defined generalized quality measures to quantify the model's accuracy. Furthermore, we elaborated a diagnosis tool applicable for atmospheric variables to assess the model's accuracy in representing the physical processes above the surface under various aspects. By means of this evaluation approach, it could be demonstrated in Case Study I that the accuracy of the applied regional climate model resides at the same level as that we found for another regional model and a global model. Excessive precipitation during the rainy season in coastal regions could be identified as a major contribution leading to this result. In Case Study II, we also identified the accuracy of the investigated mean characteristics for near-surface temperature and precipitation to be comparable to another regional model. In this case, an artificial modulation of the used initial and boundary data during preprocessing could be identified as the major source of error in the simulation. Altogether, the achieved results for the presented investigations indicate the potential of our methodology to be applied as a common test bed to different fields of research in regional climate modeling.

2021 ◽  
Vol 12 (2) ◽  
pp. 457-468
Author(s):  
Kevin Sieck ◽  
Christine Nam ◽  
Laurens M. Bouwer ◽  
Diana Rechid ◽  
Daniela Jacob

Abstract. This paper presents a novel dataset of regional climate model simulations over Europe that significantly improves our ability to detect changes in weather extremes under low and moderate levels of global warming. This is a unique and physically consistent dataset, as it is derived from a large ensemble of regional climate model simulations. These simulations were driven by two global climate models from the international HAPPI consortium. The set consists of 100×10-year simulations and 25×10-year simulations, respectively. These large ensembles allow for regional climate change and weather extremes to be investigated with an improved signal-to-noise ratio compared to previous climate simulations. To demonstrate how adaptation-relevant information can be derived from the HAPPI dataset, changes in four climate indices for periods with 1.5 and 2.0 ∘C global warming are quantified. These indices include number of days per year with daily mean near-surface apparent temperature of >28 ∘C (ATG28); the yearly maximum 5-day sum of precipitation (RX5day); the daily precipitation intensity of the 50-year return period (RI50yr); and the annual consecutive dry days (CDDs). This work shows that even for a small signal in projected global mean temperature, changes of extreme temperature and precipitation indices can be robustly estimated. For temperature-related indices changes in percentiles can also be estimated with high confidence. Such data can form the basis for tailor-made climate information that can aid adaptive measures at policy-relevant scales, indicating potential impacts at low levels of global warming at steps of 0.5 ∘C.


2020 ◽  
Author(s):  
Kevin Sieck ◽  
Christine Nam ◽  
Laurens M. Bouwer ◽  
Diana Rechid ◽  
Daniela Jacob

Abstract. This paper presents a novel data set of regional climate model simulations over Europe that significantly improves our ability to detect changes in weather extremes under low and moderate levels of global warming. The data set provides a unique and physically consistent data set, as it is derived from a large ensemble of regional climate model simulations. These simulations were driven by two global climate models from the international HAPPI consortium. The set consists of 100 × 10-year simulations and 25 × 10-year simulations, respectively. These large ensembles allow for regional climate change and weather extremes to be investigated with an improved signal-to-noise ratio compared to previous climate simulations. The changes in four climate indices for temperature targets of 1.5 °C and 2.0 °C global warming are quantified: number of days per year with daily mean near-surface apparent temperature of > 28 °C (ATG28); the yearly maximum 5-day sum of precipitation (RX5day); the daily precipitation intensity of the 50-yr return period (RI50yr); and the annual Consecutive Dry Days (CDD). This work shows that even for a small signal in projected global mean temperature, changes of extreme temperature and precipitation indices can be robustly estimated. For temperature related indices changes in percentiles can also be estimated with high confidence. Such data can form the basis for tailor-made climate information that can aid adaptive measures at a policy-relevant scales, indicating potential impacts at low levels of global warming at steps of 0.5 °C.


2008 ◽  
Vol 36 ◽  
pp. 1-16 ◽  
Author(s):  
T Semmler ◽  
S Varghese ◽  
R McGrath ◽  
P Nolan ◽  
S Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document