scholarly journals Influence of rheology on debris-flow simulation

2006 ◽  
Vol 6 (4) ◽  
pp. 519-528 ◽  
Author(s):  
M. Arattano ◽  
L. Franzi ◽  
L. Marchi

Abstract. Systems of partial differential equations that include the momentum and the mass conservation equations are commonly used for the simulation of debris flow initiation, propagation and deposition both in field and in laboratory research. The numerical solution of the partial differential equations can be very complicated and consequently many approximations that neglect some of their terms have been proposed in literature. Many numerical methods have been also developed to solve the equations. However we show in this paper that the choice of a reliable rheological model can be more important than the choice of the best approximation or the best numerical method to employ. A simulation of a debris flow event that occurred in 2004 in an experimental basin on the Italian Alps has been carried out to investigate this issue. The simulated results have been compared with the hydrographs recorded during the event. The rheological parameters that have been obtained through the calibration of the mathematical model have been also compared with the rheological parameters obtained through the calibration of previous events, occurred in the same basin. The simulation results show that the influence of the inertial terms of the Saint-Venant equation is much more negligible than the influence of the rheological parameters and the geometry. A methodology to quantify this influence has been proposed.

Fractals ◽  
2020 ◽  
Vol 28 (08) ◽  
pp. 2040049 ◽  
Author(s):  
KASHIF ALI ABRO ◽  
ILYAS KHAN ◽  
KOTTAKKARAN SOOPPY NISAR

There is no denying fact that helically moving pipe/cylinder has versatile utilization in industries; as it has multi-purposes, such as foundation helical piers, drilling of rigs, hydraulic simultaneous lift system, foundation helical brackets and many others. This paper incorporates the new analysis based on modern fractional differentiation on infinite helically moving pipe. The mathematical modeling of infinite helically moving pipe results in governing equations involving partial differential equations of integer order. In order to highlight the effects of fractional differentiation, namely, Atangana–Baleanu on the governing partial differential equations, the Laplace and Hankel transforms are invoked for finding the angular and oscillating velocities corresponding to applied shear stresses. Our investigated general solutions involve the gamma functions of linear expressions. For eliminating the gamma functions of linear expressions, the solutions of angular and oscillating velocities corresponding to applied shear stresses are communicated in terms of Fox- H function. At last, various embedded rheological parameters such as friction and viscous factor, curvature diameter of the helical pipe, dynamic analogies of relaxation and retardation time and comparison of viscoelastic fluid models (Burger, Oldroyd-B, Maxwell and Newtonian) have significant discrepancies and semblances based on helically moving pipe.


Sign in / Sign up

Export Citation Format

Share Document