scholarly journals USE OF ATANGANA–BALEANU FRACTIONAL DERIVATIVE IN HELICAL FLOW OF A CIRCULAR PIPE

Fractals ◽  
2020 ◽  
Vol 28 (08) ◽  
pp. 2040049 ◽  
Author(s):  
KASHIF ALI ABRO ◽  
ILYAS KHAN ◽  
KOTTAKKARAN SOOPPY NISAR

There is no denying fact that helically moving pipe/cylinder has versatile utilization in industries; as it has multi-purposes, such as foundation helical piers, drilling of rigs, hydraulic simultaneous lift system, foundation helical brackets and many others. This paper incorporates the new analysis based on modern fractional differentiation on infinite helically moving pipe. The mathematical modeling of infinite helically moving pipe results in governing equations involving partial differential equations of integer order. In order to highlight the effects of fractional differentiation, namely, Atangana–Baleanu on the governing partial differential equations, the Laplace and Hankel transforms are invoked for finding the angular and oscillating velocities corresponding to applied shear stresses. Our investigated general solutions involve the gamma functions of linear expressions. For eliminating the gamma functions of linear expressions, the solutions of angular and oscillating velocities corresponding to applied shear stresses are communicated in terms of Fox- H function. At last, various embedded rheological parameters such as friction and viscous factor, curvature diameter of the helical pipe, dynamic analogies of relaxation and retardation time and comparison of viscoelastic fluid models (Burger, Oldroyd-B, Maxwell and Newtonian) have significant discrepancies and semblances based on helically moving pipe.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Nicolas Bertrand ◽  
Jocelyn Sabatier ◽  
Olivier Briat ◽  
Jean-Michel Vinassa

The link between fractional differentiation and diffusion equation is used in this paper to propose a solution for the implementation of fractional diffusion equations. These equations permit us to take into account species anomalous diffusion at electrochemical interfaces, thus permitting an accurate modeling of batteries, ultracapacitors, and fuel cells. However, fractional diffusion equations are not addressed in most commercial software dedicated to partial differential equations simulation. The proposed solution is evaluated in an example.


2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Yang Zhong ◽  
Qian Xu

The bending solutions of rectangular thick plate with all edges clamped and supported were investigated in this study. The basic governing equations used for analysis are based on Mindlin’s higher-order shear deformation plate theory. Using a new function, the three coupled governing equations have been modified to independent partial differential equations that can be solved separately. These equations are coded in terms of deflection of the plate and the mentioned functions. By solving these decoupled equations, the analytic solutions of rectangular thick plate with all edges clamped and supported have been derived. The proposed method eliminates the complicated derivation for calculating coefficients and addresses the solution to problems directly. Moreover, numerical comparison shows the correctness and accuracy of the results.


Author(s):  
Yuhong Zhang ◽  
Sunil K. Agrawal ◽  
Peter Hagedorn

A systematic procedure for deriving the system model of a cable transporter system with arbitrarily time-varying lengths is presented. Two different approaches are used to develop the model, namely, Newton’s Law and Hamilton’s Principle. The derived governing equations are nonlinear partial differential equations. The same results are obtained using the two methods. The Rayleigh-Ritz method is used to obtain an approximate numerical solution of the governing equations by transforming the infinite order partial differential equations into a finite order discretized system. A Lyapunov controller which can both dissipate the vibratory energy and assure the attainment of the desired goal is derived. The validity of the proposed controller is verified by numerical simulation.


2005 ◽  
Vol 11 (3) ◽  
pp. 431-456 ◽  
Author(s):  
Yuhong Zhang ◽  
Sunil K. Agrawal ◽  
Peter Hagedorn

We present a systematic procedure for deriving the model of a cable transporter system with arbitrarily varying cable lengths. The Hamilton principle is applied to derive the governing equations of motion. The derived governing equations are nonlinear partial differential equations. The results are verified using the Newton law. The assumed mode method is used to obtain an approximate numerical solution of the governing equations by transforming the infinite-dimensional partial differential equations into a finite-dimensional discretized system. We propose a Lyapunov controller, based directly on the governing partial differential equations, which can both dissipate the vibratory energy during the motion of the transporter and guarantee the attainment of the desired goal point. The validity of the proposed controller is verified by numerical simulation.


2005 ◽  
Vol 4 (2) ◽  
pp. 190
Author(s):  
F. A. A. Gomes ◽  
J. B. C. Silva ◽  
A. J. Diniz

The phenomenon of ablation is a process of thermal protection with several applications, mainly, in mechanical and aerospace engineering. Ablative thermal protection is applied using special materials (named ablative materials) externally on the surface of a structure in order to isolate it against thermal effects. The ablative phenomenon is a complex process involving phase changes with partial or total loss of the material. So the position of the boundary is initially unknown. The governing equations of the process form a non-linear system of coupled partial differential equations. The one-dimensional analysis of an ablative process on the plate is performed by using the generalized integral transform technique – GITT for solution of the system of governing equations. By application of this solution technique, the system of partial differential equations is transformed into a system of infinite ordinary differential equations that can be solved after the truncation of that system by numerical techniques codes available. The plate of finite thickness at constant properties is subjected to a time-dependent prescribed radiation heat flux at one face, initially with a uniform temperature T0, and insulated on the other face. After an initial heating period, ablation starts at the heated surface through melting and continuous removal of the plate material. The results of interest are the thickness and the loss rate of the ablative material. The obtained results are compared with available results from other solution techniques in the literature.


2005 ◽  
Vol 4 (2) ◽  
Author(s):  
F. A. A. Gomes ◽  
J. B. C. Silva ◽  
A. J. Diniz

The phenomenon of ablation is a process of thermal protection with several applications, mainly, in mechanical and aerospace engineering. Ablative thermal protection is applied using special materials (named ablative materials) externally on the surface of a structure in order to isolate it against thermal effects. The ablative phenomenon is a complex process involving phase changes with partial or total loss of the material. So the position of the boundary is initially unknown. The governing equations of the process form a non-linear system of coupled partial differential equations. The one-dimensional analysis of an ablative process on the plate is performed by using the generalized integral transform technique – GITT for solution of the system of governing equations. By application of this solution technique, the system of partial differential equations is transformed into a system of infinite ordinary differential equations that can be solved after the truncation of that system by numerical techniques codes available. The plate of finite thickness at constant properties is subjected to a time-dependent prescribed radiation heat flux at one face, initially with a uniform temperature T0, and insulated on the other face. After an initial heating period, ablation starts at the heated surface through melting and continuous removal of the plate material. The results of interest are the thickness and the loss rate of the ablative material. The obtained results are compared with available results from other solution techniques in the literature.


1992 ◽  
Vol 3 (4) ◽  
pp. 343-366 ◽  
Author(s):  
Gunnar Aronsson ◽  
Ulf Janfalk

This paper reviews the governing equations for a plane Hele–Shaw flow of a power-law fluid. We find two closely related partial differential equations, one for the pressure and one for the stream function. Some mathematical results for these equations are presented, in particular some exact solutions and a representation theorem. The results are applied to Hele–Shaw flow. It is then possible to determine the flow near an arbitrary corner for any power-law fluid. Other examples are also given.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Wenchao Liu ◽  
Jun Yao

The existence of a TPG can generate a relatively high pressure gradient in the process of fluid flow in porous media in low-permeable reservoirs, and neglecting the QPGTs in the governing equations, by assuming a small pressure gradient for such a problem, can cause a significant error in predicting the formation pressure. Based on these concerns, in consideration of the QPGT, a moving boundary model of radial flow in low-permeable reservoirs with the TPG for the case of a constant flow rate at the inner boundary is constructed. Due to strong nonlinearity of the mathematical model, a numerical method is presented: the system of partial differential equations for the moving boundary problem is first transformed equivalently into a closed system of partial differential equations with fixed boundary conditions by a spatial coordinate transformation method; and then a stable, fully implicit finite difference method is used to obtain its numerical solution. Numerical result analysis shows that the mathematical models of radial flow in low-permeable reservoirs with TPG must take the QPGT into account in their governing equations, which is more important than those of Darcy’s flow; the sensitive effects of the QPGT for the radial flow model do not change with an increase of the dimensionless TPG.


2006 ◽  
Vol 6 (4) ◽  
pp. 519-528 ◽  
Author(s):  
M. Arattano ◽  
L. Franzi ◽  
L. Marchi

Abstract. Systems of partial differential equations that include the momentum and the mass conservation equations are commonly used for the simulation of debris flow initiation, propagation and deposition both in field and in laboratory research. The numerical solution of the partial differential equations can be very complicated and consequently many approximations that neglect some of their terms have been proposed in literature. Many numerical methods have been also developed to solve the equations. However we show in this paper that the choice of a reliable rheological model can be more important than the choice of the best approximation or the best numerical method to employ. A simulation of a debris flow event that occurred in 2004 in an experimental basin on the Italian Alps has been carried out to investigate this issue. The simulated results have been compared with the hydrographs recorded during the event. The rheological parameters that have been obtained through the calibration of the mathematical model have been also compared with the rheological parameters obtained through the calibration of previous events, occurred in the same basin. The simulation results show that the influence of the inertial terms of the Saint-Venant equation is much more negligible than the influence of the rheological parameters and the geometry. A methodology to quantify this influence has been proposed.


Sign in / Sign up

Export Citation Format

Share Document