scholarly journals Forest fire danger rating in complex topography – results from a case study in the Bavarian Alps in autumn 2011

2013 ◽  
Vol 1 (2) ◽  
pp. 1383-1407
Author(s):  
C. Schunk ◽  
C. Wastl ◽  
M. Leuchner ◽  
C. Schuster ◽  
A. Menzel

Abstract. Forest fire danger rating based on sparse meteorological stations is known to be potentially misleading when assigned to larger areas with a complex topography. This case study examines outputs of several fire danger rating systems based on data from two meteorological stations in different elevations during a major drought period. This drought was caused by a persistent high pressure system, inducing a pronounced temperature inversion with cool, humid conditions in the lower and warmer, dryer conditions in the upper layer. Thus, a massive drying of fuels, leading to a high fire danger level and multiple fire occurrences at higher elevations were contrasted by moderate fire danger in the valleys. The relative accuracy of fire danger rating indices was studied based on a comparison with the actual fire danger as determined from expert observations, fire occurrences and fuel moisture measurements. The results revealed that, during temperature inversion, differences in daily cycles of meteorological parameters influence fire danger and that these are not resolved by standard meteorological stations and fire danger indices. Additional stations in higher locations or high-resolution meteorological models in combination with fire danger indices that accept hourly input data may allow reasonable fire danger calculations under these circumstances.

2013 ◽  
Vol 13 (9) ◽  
pp. 2157-2167 ◽  
Author(s):  
C. Schunk ◽  
C. Wastl ◽  
M. Leuchner ◽  
C. Schuster ◽  
A. Menzel

Abstract. Forest fire danger rating based on sparse meteorological stations is known to be potentially misleading when assigned to larger areas of complex topography. This case study examines several fire danger indices based on data from two meteorological stations at different elevations during a major drought period. This drought was caused by a persistent high pressure system, inducing a pronounced temperature inversion and its associated thermal belt with much warmer, dryer conditions in intermediate elevations. Thus, a massive drying of fuels, leading to higher fire danger levels, and multiple fire occurrences at mid-slope positions were contrasted by moderate fire danger especially in the valleys. The ability of fire danger indices to resolve this situation was studied based on a comparison with the actual fire danger as determined from expert observations, fire occurrences and fuel moisture measurements. The results revealed that, during temperature inversion, differences in daily cycles of meteorological parameters influence fire danger and that these are not resolved by standard meteorological stations and fire danger indices (calculated on a once-a-day basis). Additional stations in higher locations or high-resolution meteorological models combined with fire danger indices accepting at least hourly input data may allow reasonable fire danger calculations under these circumstances.


1989 ◽  
Vol 65 (4) ◽  
pp. 258-265 ◽  
Author(s):  
B. J. Stocks ◽  
T. J. Lynham ◽  
B. D Lawson ◽  
M. E. Alexander ◽  
C. E. Van Wagner ◽  
...  

Forest fire danger rating research in Canada was initiated by the federal government in 1925. Five different fire danger rating systems have been developed since that time, each with increasing universal applicability across Canada. The approach has been to build on previous danger rating systems in an evolutionary fashion and to use field experiments and empirical analysis extensively. The current system, the Canadian Forest Fire Danger Rating System (CFFDRS), has been under development by Forestry Canada since 1968. The first major subsystem of the CFFDRS, the Canadian Forest Fire Weather Index (FWI) System, provides numerical ratings of relative fire potential based solely on weather observations, and has been in use throughout Canada since 1970. The second major subsystem, the Canadian Forest Fire Behavior Prediction (FBP) System, accounts for variability in fire behavior among fuel types (predicting rate of spread, fuel consumption, and frontal fire intensity), was issued in interim form in 1984 with final production scheduled for 1990. A third major CFFDRS subsystem, the Canadian Forest Fire Occurrence Prediction (FOP) System, is currently being formulated. This paper briefly outlines the history and philosophy of fire danger rating research in Canada discussing in detail the structure of the current CFFDRS and its application and use by fire management agencies throughout Canada. Key words: fire danger, fire behavior, fire occurrence prediction, fuel moisture, fire danger rating system, fire management.


1989 ◽  
Vol 65 (6) ◽  
pp. 450-457 ◽  
Author(s):  
B. J. Stocks ◽  
T. J. Lynham ◽  
B. D. Lawson ◽  
M. E. Alexander ◽  
C. E. Van Wagner ◽  
...  

Forest fire danger rating research in Canada was initiated by the federal government in 1925. Five different fire danger rating systems have been developed since that time, each with increasing universal applicability across Canada. The approach has been to build on previous danger rating systems in an evolutionary fashion and to use field experiments and empirical analysis extensively. The current system, the Canadian Forest Fire Danger Rating System (CFFDRS), has been under development by Forestry Canada since 1968. The first major subsystem of the CFFDRS, the Canadian Forest Fire Weather Index (FWI) System, provides numerical ratings of relative fire potential based solely on weather observations, and has been in use throughout Canada since 1970. The second major subsystem, the Canadian Forest Fire Behavior Prediction (FBP) System, accounts for variability in fire behavior among fuel types (predicting rate of spread, fuel consumption, and frontal fire intensity), was issued in interim form in 1984 with final production scheduled for 1990. A third major CFFDRS subsystem, the Canadian Forest Fire Occurrence Prediction (FOP) System, is currectly being formulated. This paper briefly outline the history and philosophy of fire danger rating research in Canada discussing in detail the structure of the current CFFDRS and its application and use by fire management agencies throughout Canada. Key words: fire danger, fire behavior, fire occurrence prediction, fuel moisture, fire danger rating system, fire management.


2021 ◽  
Vol 9 (3) ◽  
pp. 148
Author(s):  
Elena Petrovna Yankovich ◽  
Ksenia Stanislavovna Yankovich ◽  
Nikolay Viktorovich Baranovskiy

Author(s):  
Suresh Babu KV ◽  
Arijit Roy ◽  
Ramachandra Prasad P

Forest fire is a major ecological disaster, which has economic, social and environmental impacts on humans and also causes the loss of biodiversity. Forest officials issue the warnings to the public on the basis of fire danger index classes. There is no fire danger index for the country India due to the sparsely distributed meteorological stations. Previous studies suggest that Static Fire Danger Index (SFDI) as well as Dynamic Fire Danger Index (DFDI) have been derived from the satellite datasets. In this study, we have made an attempt to integrate both the Static and Dynamic fire danger indices and also used the Near Real Time (NRT) data sets that can be available for download through NASA FTP server after one hour of the satellite overpass. In this study, DFDI has been calculated from the MODIS Terra NRT Land Surface Temperature (MOD11_L2) and MODIS TERRA NRT surface reflectance MOD09. Finally, The Forest Fire Danger Index (FFDI) has been developed from the static and dynamic fire danger indices by the additive model and the overall accuracy was around 81.27%. Thus, the FFDI has been useful to predict the fire danger accurately and can be useful anywhere, where the meteorological stations are un-available.


Sign in / Sign up

Export Citation Format

Share Document