scholarly journals Brief Communication: A new testing field for debris flow warning systems and algorithms

2015 ◽  
Vol 3 (3) ◽  
pp. 1717-1729
Author(s):  
M. Arattano ◽  
V. Coviello ◽  
M. Cavalli ◽  
F. Comiti ◽  
P. Macconi ◽  
...  

Abstract. Early warning systems (EWSs) are among the measures adopted for the mitigation of debris flow hazards. EWSs often employ algorithms that require careful and long testing to grant their effectiveness. A permanent installation has been so equipped in the Gadria basin (Eastern Italian Alps) for the systematic test of event-EWSs. The installation is conceived to produce didactic videos and host informative visits. The populace involvement and education is in fact an essential step in any hazard mitigation activity and it should envisaged in planning any research activity. The occurrence of a debris flow in the Gadria creek, in the summer of 2014, allowed a first test of the installation and the recording of an informative video on EWSs.

2015 ◽  
Vol 15 (7) ◽  
pp. 1545-1549 ◽  
Author(s):  
M. Arattano ◽  
V. Coviello ◽  
M. Cavalli ◽  
F. Comiti ◽  
P. Macconi ◽  
...  

Abstract. A permanent field installation for the systematic test of debris flow warning systems and algorithms has been equipped on the eastern Italian Alps. The installation was also designed to produce didactic videos and it may host informative visits. The populace education is essential and should be envisaged in planning any research on hazard mitigation interventions: this new installation responds to this requirement and offers an example of integration between technical and informative needs. The occurrence of a debris flow in 2014 allowed the first tests of a new warning system under development and to record an informative video on its performances. This paper will provide a description of the installation and an account of the first technical and informative results obtained.


2020 ◽  
Author(s):  
Velio Coviello ◽  
Matteo Berti ◽  
Lorenzo Marchi ◽  
Francesco Comiti ◽  
Giulia Marchetti ◽  
...  

<p>The complete understanding of the mechanisms controlling debris-flow initiation is still an open challenge in landslide research. Most debris-flow models assume that motion suddenly begins when a large force imbalance is imposed by slope instabilities or the substrate saturation that causes the collapse of the channel sediment cover. In the real world, the initiation of debris flows usually results from the perturbation of the static force balance that retains sediment masses in steep channels. These perturbations are primarily generated by the increasing runoff and by the progressive erosion of the deposits. Therefore, great part of regional early warning systems for debris flows are based on critical rainfall thresholds. However, these systems are affected by large spatial-temporal uncertainties due to the inadequate number and distribution of rain gauges. In addition, rainfall analysis alone does not explain the dynamics of sediment fluxes at the catchment scale: short-term variations in the sediment sources strongly influence the triggering of debris flows, even in catchments characterized by unlimited sediment supply.</p><p>In this work, we present multi-parametric observations of debris flows at the headwaters of the Gadria catchment (eastern Italian Alps). In 2018, we installed a monitoring network composed of geophones, three soil moisture probes, one tensiometer and two rain-triggered videocameras in a 30-m wide steep channel located at about 2200 m a.s.l. Most sensors lie on the lateral ridges of this channel, except for the tensiometer and the soil moisture probes that are installed in the channel bed at different depths. This network recorded four flow events in two years, two of which occurred at night. Specifically, the debris flows that occurred on 21 July 2018 and 26 July 2019 produced remarkable geomorphic changes in the monitored channel, with up to 1-m deep erosion. For all events, we measured peak values of soil water content that are far from saturation (<0.25 at -20 cm, <0.15 at -40 cm, <0.1 at -60 cm). We derived the time of occurrence and the duration of these events from the analysis of the seismic signals. Combining these pieces of information with data gathered at the monitoring station located about 2 km downstream, we could determine the flow kinematics along the main channel.</p><p>These results, although still preliminary, show the relevance of a multi-parametric detection of debris-flow initiation processes and may have valuable implications for risk management. Alarm systems for debris flows are becoming more and more attractive due the continuous development of compact and low-cost distributed sensor networks. The main challenge for operational alarm systems is the short lead-time, which is few tens of seconds for closing a transportation route or tens of minutes for evacuating settlements. Lead-time would significantly increase installing a detection system in the upper part of a catchment, where the debris flow initiates. The combination of hydro-meteorological monitoring in the source areas and seismic detection of channelized flows may be a reliable approach for developing an integrated early warning - alarm system.</p>


Author(s):  
M. Coco ◽  
E. Marchetti ◽  
O. Morandi

AbstractDebris flows constitute a severe natural hazard in Alpine regions. Studies are performed to understand the event predictability and to identify early warning systems and procedures. These are based both on sensors deployed along the channels or on the amplitude of seismic and infrasound waves radiated by the flow and recorded far away. Despite being very promising, infrasound cannot be used to infer the source characteristics due to the lack of a physical model of the infrasound energy radiated by debris flows. Here the simulation of water flow along a simple channel is presented, experiencing the fall from a dam, performed within the open source simulation code OpenFOAM. The pressure perturbation within the atmosphere produced by the flow is extracted and the infrasound signature of the events as a function of the flow characteristics is defined. Numerical results suggest that infrasound is radiated immediately downstream of the dam with amplitude and period that scale with dam height and water level. Modeled infrasound waveform is interpreted as being produced mostly by waves at the water free surface developing downstream of the dam. Despite the effect of sediments is not considered in this first study and will be implemented in future investigations, numerical results obtained with this simple model are in general agreement with experimental results obtained from array analysis of infrasound data recorded at Illgraben, Switzerland. Results highlight how numerical modeling can provide critical information to define a source mechanism of infrasound energy radiation by debris-flow, that is required also to improve early warning systems.


Landslides ◽  
2020 ◽  
Vol 17 (10) ◽  
pp. 2409-2419
Author(s):  
Zongji Yang ◽  
Liyong Wang ◽  
Jianping Qiao ◽  
Taro Uchimura ◽  
Lin Wang

Abstract Rainfall-induced landslides are a frequent and often catastrophic geological disaster, and the development of accurate early warning systems for such events is a primary challenge in the field of risk reduction. Understanding of the physical mechanisms of rainfall-induced landslides is key for early warning and prediction. In this study, a real-time multivariate early warning method based on hydro-mechanical analysis and a long-term sequence of real-time monitoring data was proposed and verified by applying the method to predict successive debris flow events that occurred in 2017 and 2018 in Yindongzi Gully, which is in Wenchuan earthquake region, China. Specifically, long-term sequence slope stability analysis of the in situ datasets for the landslide deposit as a benchmark was conducted, and a multivariate indicator early warning method that included the rainfall intensity-probability (I-P), saturation (Si), and inclination (Ir) was then proposed. The measurements and analysis in the two early warning scenarios not only verified the reliability and practicality of the multivariate early warning method but also revealed the evolution processes and mechanism of the landslide-generated debris flow in response to rainfall. Thus, these findings provide a new strategy and guideline for accurately producing early warnings of rainfall-induced landslides.


2021 ◽  
Vol 9 (2) ◽  
pp. 295-315
Author(s):  
Benedetta Dini ◽  
Georgina L. Bennett ◽  
Aldina M. A. Franco ◽  
Michael R. Z. Whitworth ◽  
Kristen L. Cook ◽  
...  

Abstract. Boulder movement can be observed not only in rockfall activity, but also in association with other landslide types such as rockslides, soil slides in colluvium originating from previous rockslides, and debris flows. Large boulders pose a direct threat to life and key infrastructure in terms of amplifying landslide and flood hazards as they move from the slopes to the river network. Despite the hazard they pose, boulders have not been directly targeted as a mean to detect landslide movement or used in dedicated early warning systems. We use an innovative monitoring system to observe boulder movement occurring in different geomorphological settings before reaching the river system. Our study focuses on an area in the upper Bhote Koshi catchment northeast of Kathmandu, where the Araniko highway is subjected to periodic landsliding and floods during the monsoons and was heavily affected by coseismic landslides during the 2015 Gorkha earthquake. In the area, damage by boulders to properties, roads, and other key infrastructure, such as hydropower plants, is observed every year. We embedded trackers in 23 boulders spread between a landslide body and two debris flow channels before the monsoon season of 2019. The trackers, equipped with accelerometers, can detect small angular changes in the orientation of boulders and large forces acting on them. The data can be transmitted in real time via a long-range wide-area network (LoRaWAN®) gateway to a server. Nine of the tagged boulders registered patterns in the accelerometer data compatible with downslope movements. Of these, six lying within the landslide body show small angular changes, indicating a reactivation during the rainfall period and a movement of the landslide mass. Three boulders located in a debris flow channel show sharp changes in orientation, likely corresponding to larger free movements and sudden rotations. This study highlights the fact that this innovative, cost-effective technology can be used to monitor boulders in hazard-prone sites by identifying the onset of potentially hazardous movement in real time and may thus establish the basis for early warning systems, particularly in developing countries where expensive hazard mitigation strategies may be unfeasible.


2020 ◽  
Author(s):  
Benedetta Dini ◽  
Georgina L. Bennett ◽  
Aldina M. A. Franco ◽  
Michael R. Z. Whitworth ◽  
Kristen L. Cook ◽  
...  

Abstract. Boulder movement can be observed not only in rock fall activity, but also in association with other landslide types such as rock slides, soil slides in colluvium originated from previous rock slides and debris flows. Large boulders pose a direct threat to life and key infrastructure, amplifying landslide and flood hazards, as they move from the slopes to the river network. Despite the hazard they pose, boulders have not been directly targeted as a mean to detect landslide movement or used in dedicated early warning systems. We use an innovative monitoring system to observe boulder movement occurring in different geomorphological settings, before reaching the river system. Our study focuses on an area in the upper Bhote Koshi catchment northeast of Kathmandu, where the Araniko highway is subjected to periodic landsliding and floods during the monsoons and was heavily affected by coseismic landslides during the 2015 Gorkha earthquake. In the area, damage by boulders to properties, roads and other key infrastructure, such as hydropower plants, is observed every year. We embedded trackers in 23 boulders spread between a landslide body and two debris flow channels, before the monsoon season of 2019. The trackers, equipped with accelerometers, can detect small angular changes in boulders orientation and large forces acting on them. The data can be transmitted in real time, via a long-range wide area network (LoRaWAN®) gateway to a server. Nine of the tagged boulders registered patterns in the accelerometer data compatible with downslope movements. Of these, six lying within the landslide body show small angular changes, indicating a reactivation during the rainfall period and a movement consistent with the landslide mass. Three boulders, located in a debris flow channel, show sharp changes in orientation, likely corresponding to larger free movements and sudden rotations. This study highlights that this innovative, cost-effective technology can be used to monitor boulders in hazard prone sites, identifying in real time the onset of movement, and may thus set the basis for early warning systems, particularly in developing countries, where expensive hazard mitigation strategies may be unfeasible.


Sign in / Sign up

Export Citation Format

Share Document