scholarly journals Anomalous diffusion in geophysical and laboratory turbulence

1994 ◽  
Vol 1 (2/3) ◽  
pp. 80-94 ◽  
Author(s):  
A. Tsinober

Abstract. We present an overview and some new results on anomalous diffusion of passive scalar in turbulent flows (including those used by Richardson in his famous paper in 1926). The obtained results are based on the analysis of the properties of invariant quantities (energy, enstrophy, dissipation, enstrophy generation, helicity density, etc.) - i.e. independent of the choice of the system of reference as the most appropriate to describe physical processes - in three different turbulent laboratory flows (grid-flow, jet and boundary layer, see Tsinober et al. (1992) and Kit et al. (1993). The emphasis is made on the relations between the asymptotic properties of the intermittency exponents of higher order moments of different turbulent fields (energy, dissipation, helicity, spontaneous breaking of isotropy and reflexional symmetry) and the variability of turbulent diffusion in the atmospheric boundary layer, in the troposphere and in the stratosphere. It is argued that local spontaneous breaking of isotropy of turbulent flow results in anomalous scaling laws for turbulent diffusion (as compared to the scaling law of Richardson) which are observed, as a rule, in different atmospheric layers from the atmospheric boundary layer (ABL) to the stratosphere. Breaking of rotational symmetry is important in the ABL, whereas reflexional symmetry breaking is dominating in the troposphere locally and in the stratosphere globally. The results are of speculative nature and further analysis is necessary to validate or disprove the claims made, since the correspondence with the experimental results may occur for the wrong reasons as happens from time to time in the field of turbulence.

2020 ◽  
Vol 20 (21) ◽  
pp. 12939-12953
Author(s):  
Yaping Shao ◽  
Jie Zhang ◽  
Masahide Ishizuka ◽  
Masao Mikami ◽  
John Leys ◽  
...  

Abstract. Particle size distribution of dust at emission (dust PSD) is an essential quantity to estimate in dust studies. It has been recognized in earlier research that dust PSD is dependent on soil properties (e.g. whether soil is sand or clay) and friction velocity, u∗, which is a surrogate for surface shear stress and a descriptor for saltation-bombardment intensity. This recognition has been challenged in some recent papers, causing a debate on whether dust PSD is “invariant” and the search for its justification. In this paper, we analyse the dust PSD measured in the Japan Australian Dust Experiment and show that dust PSD is dependent on u∗ and on atmospheric boundary-layer (ABL) stability. By simple theoretical and numerical analysis, we explain the two reasons for the latter dependency, which are both related to enhanced saltation bombardment in convective turbulent flows. First, u∗ is stochastic and its probability distribution profoundly influences the magnitude of the mean saltation flux due to the non-linear relationship between saltation flux and u∗. Second, in unstable conditions, turbulence is usually stronger, which leads to higher saltation-bombardment intensity. This study confirms that dust PSD depends on u∗ and, more precisely, on the probability distribution of u∗, which in turn is dependent on ABL stability; consequently, dust PSD is also dependent on ABL. We also show that the dependency of dust PSD on u∗ and ABL stability is made complicated by soil surface conditions. In general, our analysis reinforces the basic conceptual understanding that dust PSD depends on saltation bombardment and inter-particle cohesion.


2018 ◽  
Vol 858 ◽  
pp. 1-4 ◽  
Author(s):  
G. G. Katul

The atmospheric boundary layer is the level of the atmosphere where all human activities occur. It is a layer characterized by its turbulent flow state, meaning that the velocity, temperature and scalar concentrations fluctuate over scales that range from less than a millimetre to several kilometres. It is those fluctuations that make dispersion of pollutants and transport of heat, momentum as well as scalars such as carbon dioxide or cloud-condensation nuclei efficient. It is also the layer where a ‘hand-shake’ occurs between activities on the land surface and the climate system, primarily due to the action of large energetic swirling motions or eddies. The atmospheric boundary layer experiences dramatic transitions depending on whether the underlying surface is being heated or cooled. The existing paradigm describing the size and energetics of large-scale and very large-scale eddies in turbulent flows has been shaped by decades of experiments and simulations on smooth pipes and channels with no surface heating or cooling. The emerging picture, initiated by A. A. Townsend in 1951, is that large- and very large-scale motions appear to be approximated by a collection of hairpin-shaped vortices whose population density scales inversely with distance from the boundary. How does surface heating, quintessential to the atmospheric boundary layer, alter this canonical picture? What are the implications of such a buoyancy force on the geometry and energy distribution across velocity components in those large eddies? How do these large eddies modulate small eddies near the ground? Answering these questions and tracking their consequences to existing theories used today to describe the flow statistics in the atmospheric boundary layer are addressed in the work of Salesky & Anderson (J. Fluid Mech., vol. 856, 2018, pp. 135–168). The findings are both provocative and surprisingly simple.


2006 ◽  
Vol 2 (3) ◽  
pp. 371-373 ◽  
Author(s):  
A.M Reynolds ◽  
D.A Bohan ◽  
J.R Bell

We present a new model of ballooning behaviour in arthropods in which draglines are regarded as being extendible and completely flexible. Our numerical simulations reveal that silk draglines within turbulent flows can become twisted and stretched into highly contorted shapes. Ballooners are therefore predicted to have little control over their aerodynamic drag and their dispersal within the atmospheric boundary layer. Dragline length is crucial only at lift-off. This prediction runs counter to that of Humphrey who suggested that the length of rigid draglines can be used to control dispersal. In contrast with Humphrey's model, the new model accounts naturally for the large distances travelled by some ballooners.


Author(s):  
Tanmoy Chatterjee ◽  
Yulia T. Peet

Large scale coherent structures in atmospheric boundary layer (ABL) are known to contribute to the power generation in wind farms. In the current paper, we perform a detailed analysis of the large scale structures in a finite sized wind turbine canopy using modal analysis from three dimensional proper orthogonal decomposition (POD). While POD analysis sheds light on the large scale coherent modes and scaling laws of the eigenspectra, we also observe a slow convergence of the spectral trends with the available number of snapshots. Since the finite sized array is periodic in the spanwise direction, we propose to adapt a novel approach of performing POD analysis of the spanwise/lateral Fourier transformed velocity snapshots instead of the snapshots themselves. This methodology not only helps in decoupling the length scales in the spanwise and the streamwise direction when studying the energetic coherent modes, but also provides a detailed guidance towards understanding the convergence of the eigenspectra. In particular, the Fourier-POD eigenspectra helps us illustrate if the dominant scaling laws observed in 3D POD are actually contributed by the laterally wider or thinner structures and provide more detailed insight on the structures themselves. We use the database from our previous large eddy simulation (LES) studies on finite-sized wind farms which uses wall-modeled LES for modeling the Atmospheric boundary layer laws, and actuator lines for the turbine blades. Understanding the behaviour of such structures would not only help better assess reduced order models (ROM) for forecasting the flow and power generation but would also play a vital role in improving the decision making abilities in wind farm optimization algorithms in future. Additionally, this study also provides guidance for better understanding the POD analysis in the turbulence and wind farm community.


2020 ◽  
Vol 59 (5) ◽  
pp. 885-899
Author(s):  
Yansen Wang ◽  
Jonathan Decker ◽  
Eric R. Pardyjak

ABSTRACTA three-dimensional, prognostic Atmospheric Boundary Layer Environment–Lattice Boltzmann Model (ABLE-LBM) using the multiple-relaxation-time lattice Boltzmann method was developed for large-eddy simulation of urban boundary layer atmospheric flows. In this article we describe the details of the ABLE-LBM for urban flow, its implementation of complex boundaries, and the subgrid turbulence parameterizations. As a first validation of this newly developed model, the simulation results were evaluated with two wind-tunnel datasets that were collected using particle image velocimetry and Irwin probes, respectively. The ABLE-LBM simulations use the same building layout and Reynolds numbers used in the laboratory wind tunnels. The ABLE-LBM simulations compare favorably to both laboratory studies in terms of the mean wind fields. The turbulent fluxes simulated by the model in the observational planes also agreed reasonably well with the laboratory results. The model produced urban canyon flows and vortices on the lee side and over the building tops that are similar to those of the laboratory studies in strength and location. This validation study using laboratory data indicates that our new ABLE-LBM is a viable approach for modeling atmospheric turbulent flows in urban environments. A numerical implementation using a graphics processing unit shows that real-time simulations are achieved for these two validation cases.


Sign in / Sign up

Export Citation Format

Share Document