scholarly journals Conditional nonlinear optimal perturbations of the double-gyre ocean circulation

2008 ◽  
Vol 15 (5) ◽  
pp. 727-734 ◽  
Author(s):  
A. D. Terwisscha van Scheltinga ◽  
H. A. Dijkstra

Abstract. In this paper, we study the development of finite amplitude perturbations on linearly stable steady barotropic double-gyre flows in a rectangular basin using the concept of Conditional Nonlinear Optimal Perturbation (CNOP). The CNOPs depend on a time scale of evolution te and an initial perturbation threshold δ. Under symmetric wind forcing, a perfect pitchfork perturbation occurs in the model. The CNOPs are determined for all linearly stable states and the time evolution of the CNOPs is studied. It is found that the patterns of the CNOPs are similar to those of the non-normal modes for small te and approach those of the normal modes for larger te. With slightly asymmetric winds, an imperfect pitchfork occurs in the model. Indications are found that the time evolution of the CNOPs is related to the value of the dissipation function of the underlying steady state.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Bo Wang ◽  
Peijun Zhang ◽  
Zhenhua Huo ◽  
Qianqian Qi

The instability and sensitivity of a lake ecosystem to the finite-amplitude perturbations related to the initial condition and the parameter correspondingly are studied. The CNOP-I and CNOP-P methods are adopted to investigate this nonlinear system. The numerical results with CNOP-I method show that the lake ecosystem can be nonlinearly unstable with finite-amplitude initial perturbations when the nutrient loading rate is between the two bifurcation points. A large enough finite amplitude initial perturbation, that is, CNOP-I, can induce a transition from an oligotrophic (eutrophic) state to an eutrophic (oligotrophic) state. With CNOP-P method, it is shown that the lake ecosystem can be transformed from an oligotrophic (eutrophic) state to an eutrophic (oligotrophic) state with a large enough finite amplitude parameter perturbation, that is, CNOP-P, no matter how large the nutrient loading rate is.


2018 ◽  
Vol 75 (8) ◽  
pp. 2741-2761 ◽  
Author(s):  
Maxim V. Kalashnik ◽  
Otto Chkhetiani

Abstract Within the framework of the baroclinic instability Eady model, an analytical approach to the determination of optimal perturbations with a maximum of the energy growth rate or the ratio of the final and initial energies is considered. This approach is based on the energy balance equation and explicit expressions for the energy functionals resulting from the perturbation representation by means of the superposition of the edge Rossby waves (ERWs). The corresponding expressions are functions of the parameters of the initial perturbation, and the determination of optimal parameters reduces to the study of these functions on an extremum. For perturbations with zero potential vorticity (PV), the amplitudes of the initial buoyancy distributions at the boundaries of the atmospheric layer and the phase shift between these distributions serve as parameters. Analytical formulas are obtained for the optimal phase shift and the maximum of the energy ratio, which determine their dependence on the wavenumber and optimization time. It is also shown that the optimal perturbations always have equal boundary amplitudes. The parameters of the optimal perturbations are compared with the parameters of the growing normal modes. It is established that there exists only one exponentially growing normal mode, which is the optimal perturbation. Along with the instability, the ERWs can be excited by their interaction with the initial vortex perturbations (PV ≠ 0). The optimal regime of ERWs excitation by the initial singular distribution of PV is investigated.


2012 ◽  
Vol 599 ◽  
pp. 705-708 ◽  
Author(s):  
Bo Wang ◽  
Zhen Hua Huo ◽  
Qian Qian Qi ◽  
Pei Jun Zhang

Using a dynamical model for nutrient cycling in shallow lakes, the approach of conditional nonlinear optimal perturbation (CNOP) was adopted to investigate the instability and the sensitivity of the lake ecosystem to finite-amplitude perturbations both related to the initial condition and the parameter. The results show that the ecosystem can be transformed from an oligotrophic (eutrophic) state to an eutrophic (oligotrophic) state with a CNOP as the perturbation, no matter how large the nutrient loading rate is. Above all, with the same restraints related to the initial perturbation and the parameter perturbation, CNOP has the largest effect on the lake ecosystem, which may be helpful to govern the lake ecosystem.


2010 ◽  
Vol 128 (4-6) ◽  
pp. 769-782 ◽  
Author(s):  
Adrián Kalstein ◽  
Sebastián Fernández-Alberti ◽  
Adolfo Bastida ◽  
Miguel Angel Soler ◽  
Marwa H. Farag ◽  
...  

In this paper we embark on a calculation of all the normal-mode perturbations of nonlinear, irrotational gravity waves as a function of the wave steepness. The method is to use as coordinates the stream-function and velocity potential in the steady, unperturbed wave (seen in a reference frame moving with the phase speed) together with the time t. The dependent quantities are the cartesian displacements and the perturbed stream function at the free surface. To begin we investigate the ‘superharmonics’, i.e. those perturbations having the same horizontal scale as the fundamental wave, or less. When the steepness of the fundamental is small, the normal modes take the form of travelling waves superposed on the basic nonlinear wave. As the steepness increases the frequency of each perturbation tends generally to be diminished. At a steepness ak ≈ 0.436 it appears that the two lowest modes coalesce and an instability arises. There is evidence that this critical steepness corresponds precisely with the steepness at which the phase velocity is a maximum, considered as a function of ak. The calculations are facilitated by the discovery of some new identities between the coefficients in Stokes’s expansion for waves of finite amplitude.


2019 ◽  
Vol 76 (12) ◽  
pp. 3831-3846 ◽  
Author(s):  
Carlos F. M. Raupp ◽  
André S. W. Teruya ◽  
Pedro L. Silva Dias

Abstract Here the theory of global nonhydrostatic normal modes has been further developed with the analysis of both linear and weakly nonlinear energetics of inertia–acoustic (IA) and inertia–gravity (IG) modes. These energetics are analyzed in the context of a shallow global nonhydrostatic model governing finite-amplitude perturbations around a resting, hydrostatic, and isothermal background state. For the linear case, the energy as a function of the zonal wavenumber of the IA and IG modes is analyzed, and the nonhydrostatic effect of vertical acceleration on the IG waves is highlighted. For the nonlinear energetics analysis, the reduced equations of a single resonant wave triad interaction are obtained by using a pseudoenergy orthogonality relation. Integration of the triad equations for a resonance involving a short harmonic of an IG wave, a planetary-scale IA mode, and a short IA wave mode shows that an IG mode can allow two IA modes to exchange energy in specific resonant triads. These wave interactions can yield significant modulations in the dynamical fields associated with the physical-space solution with periods varying from a daily time scale to almost a month long.


2006 ◽  
Vol 36 (7) ◽  
pp. 1265-1286 ◽  
Author(s):  
Tomonori Matsuura ◽  
Mitsutaka Fujita

Abstract A two-layer shallow-water model is used to investigate the transition of wind-driven double-gyre circulation from laminar flow to turbulence as the Reynolds number (Re) is systematically increased. Two distinctly different phases of turbulent double-gyre patterns and energy trajectories are exhibited before and after at Re = 95: deterministic and fully developed turbulent circulations. In the former phase, the inertial subgyres vary between an asymmetric solution and an antisymmetric solution and the double-gyre circulations reach the aperiodic solution mainly due to their barotropic instability. An integrated kinetic energy in the lower layer is slight and the generated mesoscale eddies are confined in the upper layer. The power spectrum of energies integrated over the whole domain at Re = 70 has peaks at the interannual periods (4–7 yr) and the interdecadal period (10–20 yr). The loops of the attractors take on one cycle at those periods and display the blue-sky catastrophe. At Re = 95, the double-gyre circulation reaches a metastable state and the attracters obtained from the three energies form a topological manifold. In the latter, as Re increases, the double-gyre varies from a metastable state to a chaotic state because of the barotropic instability of the eastward jet and the baroclinic instability of recirculation retrograde flow, and the eastward jet meanders significantly with interdecadal variability. The generated eddies cascade to the red side of the power spectrum as expected in the geostrophic turbulence. The main results in the simulation may indicate essential mechanisms for the appearance of multiple states of the Kuroshio and for low-frequency variations in the midlatitude ocean.


2019 ◽  
Vol 878 ◽  
pp. 190-220 ◽  
Author(s):  
Francesca M. Sogaro ◽  
Peter J. Schmid ◽  
Aimee S. Morgans

This study analyses the interplay between classical acoustic modes and intrinsic thermoacoustic (ITA) modes in a simple thermoacoustic system. The analysis is performed using a frequency-domain low-order network model as well as a time-domain spatially discretised model. Anti-correlated modal sensitivities are found to arise due to a pairwise interplay between acoustic and ITA modes. The magnitude of the sensitivities increases as the interplay between the modes grows stronger. The results show a global behaviour of the modes linked to the presence of exceptional points in the spectrum. The time-domain analysis results in a delay-differential equation and allows the investigation of non-normal behaviour and its consequences. Pseudospectral analysis reveals that energy amplification is crucially linked to an interplay between acoustic and ITA modes. While higher non-orthogonality between two modes is correlated with peaks in modal sensitivity, transient energy growth does not necessarily involve the most sensitive modes. In particular, growth estimates based on the Kreiss constant demonstrate that transient amplification relies critically on the proximity of the non-normal modes to the imaginary axis. The time scale for transient amplification is identified as the flame time delay, which is further corroborated by determining the optimal initial conditions responsible for the bulk of the non-modal energy growth. The flame is identified as an active and dominant contributor to energy gain. The frequency of the optimal perturbation matches the acoustic time scale, once more confirming an interplay between acoustic and ITA structures. Flame-based amplification factors of two to five are found, which are significant when feeding into the acoustic dynamics and eventually triggering nonlinear limit-cycle behaviour.


Sign in / Sign up

Export Citation Format

Share Document