scholarly journals Monitoring of seasonal variability and movement of suspended sediment concentrations along the Thiruvananthapuram coast, southern India, using the Landsat OLI sensor

Ocean Science ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 1085-1092 ◽  
Author(s):  
Bismay Ranjan Tripathy ◽  
Kaliraj Seenipandi ◽  
Haroon Sajjad ◽  
Pawan Kumar Joshi ◽  
Bhagwan Singh Chaudhary ◽  
...  

Abstract. Studies on suspended sediment concentrations at a seasonal scale play a vital role in understanding coastal hydrodynamic processes in an area. Assessment of spatio-temporal changes in suspended sediments in nearshore areas has gained complexity due to the utilization of conventional methods; this issue can be successfully solved nowadays using multi-temporal remotely sensed images with the help of advanced image processing techniques. The present study is an attempt to demonstrate the model algorithm used to extract suspended sediment concentrations using Landsat 8 OLI (Operational Land Imager) sensor images. The study was executed in a near-offshore area of the Thiruvananthapuram coast, southern India, and focused on the extraction of suspended sediment concentrations and their seasonal variability during pre-monsoon and post-monsoon periods. The OLI images were pre-processed to obtain the actual reflectance using the FLASSH module of the ENVI v5.5 software. The generic model developed herein is designed to compute the spectral reflectance variability between coastal water and suspended sediments and to differentiate the spatial accumulation of the suspended sediment concentrations from the coastal water at the pixel scale. Maximum (0.8 % in near-infrared bands) and minimum (0.6 % in blue bands) spectral reflectance indicates the occurrence of suspended sediments in the coastal water. The model-derived results revealed that the suspended sediment concentration gradually decreased with increasing depth and distance from the shoreline. Higher sediment concentrations accumulated at lower depths in coastal water due to wave and current action that seasonally circulated the sediments. This higher concentration of the suspended sediment load was estimated to be 0.92 mg L−1 at the shallow depths (<10 m) of the coastal waters and 0.30 mg L−1 at a depth of 30 m. Seasonal variability of suspended sediments was observed in a north–south direction during the pre-monsoon; the reverse was noted during the post-monsoon period. The spatial variability of suspended sediments was indirectly proportional to the depth and distance from the shoreline, and directly proportional to offshore wave and littoral current activity. This study proves that the developed model coupled with the provided computational algorithm can be used as an effective tool for the estimation of suspended sediment concentrations using multi-temporal OLI images; furthermore, the output may be helpful for coastal zone management and conservation planning and development.

2020 ◽  
Vol 13 (3) ◽  
pp. 1248 ◽  
Author(s):  
Solange Cavalcanti de Melo ◽  
José Coelho de Araújo Filho ◽  
Renata Maria Caminha Mendes de Oliveira Carvalho

RESUMOO conhecimento da análise quantitativa das concentrações de sedimentos em suspensão transportados pelo rio São Francisco bem como sua relação com as vazões é de muita importância, pois pode auxiliar na identificação dos efeitos da intervenção humana e ou ocasionados pelas condições naturais da região. As regiões a jusante dos barramentos no rio São Francisco apresentam como principal consequência a regularização das vazões e a diminuição das concentrações de sedimentos. O objetivo da pesquisa foi determinar as curvas-chave de sedimentos em suspensão (CCS) nas estações fluviométricas instaladas no Baixo São Francisco (BSF) após a barragem de Xingó. Para o estabelecimento dessas curvas foram utilizados dados de vazão e concentração de sedimentos em suspensão, obtidos do sistema Hidroweb no site da Agência Nacional da Água (ANA) no período de 1999 a 2018. Foram obtidas CCS para todo o trecho do BSF as quais apresentaram bons coeficientes de determinação. Na análise dos dados também foi possível perceber que nos últimos anos, desde 2013 houve redução gradativa das vazões disponibilizadas na barragem de Xingó. Consequentemente, houve também a redução gradativa das cargas de sedimentos em suspensão geradas nas estações de Piranhas, Traipu e Propriá, ou seja, os menores valores já registrados no BSF correspondendo as menores séries históricas tanto de vazão como de sedimentos em suspensão.  Keys curves of sediment discharges in suspension in the Lower São Francisco A B S T R A C TThe knowledge of the quantitative analysis of suspended sediment concentrations carried by the São Francisco River as well as its relation with the flows is of great importance, since it can help in the identification of the effects of human intervention and/or caused by the natural conditions of the region. In the downstream regions of the São Francisco riverbanks, the main consequence was the regularization of flow rates and the reduction of sediment concentrations. The objective of the research was to determine the key curves of suspended sediments (CCS) at the fluviometric stations installed in the lower São Francisco river after Xingó dam. For the evaluation, flow data and suspended sediment concentration were used. These data were obtained from the Hidroweb system on the website of the National Water Agency (ANA) from 1999 to 2018. CCS were plotted for all stretches and presented good coefficients of determination (R2). Based on the analysis of the data it was also possible to notice that in recent years, since 2013 there has been a gradual reduction of the flows available in the Xingó dam. Consequently, there was also a gradual reduction of suspended sediment loads generated at the Piranhas, Traipu and Propriá stations, that is, the lowest values already recorded in lower São Francisco, corresponding to the lower historical series of both discharge and suspended sediments.Keywords: dam, flow, sediments 


2017 ◽  
Vol 49 (1) ◽  
pp. 73 ◽  
Author(s):  
Teguh Hariyanto ◽  
Trismono C. Krisna ◽  
Khomsin Khomsin ◽  
Cherie Bhekti Pribadi ◽  
Nadjadji Anwar

The decrease of coastal-water quality in the Surabaya coastal region can be recognized from the conceentration of Total Suspended Sediment(TSS ) . As a result we need a system for monitoring sediment concentration in the coastal region of Surabaya which regularly measures TSS. The principle to model and monitor TSSconcentration using remote sensing methods is by the integration of Landsat-8OLI satellites image processing using some ofTSS-models then those are analyzed for looking its suitability with TSS value direcly measured in the field ( in-situ measurement). The TSS value modeled from all algorithms validated usingcorrelation analysis and linear regression . The result shows that TSS model with the highest correlation value is TSS algorithm by Budiman (2004)with r value 0.991. Hence this algorithm can be used to investigate TSS-distribution which represent the coastal water quality of Surabaya with TSS value between 75 mg/L to 125 mg/L.


2020 ◽  
Vol 9 (1) ◽  
pp. 77-82
Author(s):  
Petrus Subardjo ◽  
Agus Anugroho Dwi Suryoputro ◽  
Ibnu Praktikto

Sedimen tersuspensi dianggap sebagai sedimen yang didistribusikan oleh arus laut. Arus sepanjang pantai (longshore current) berperan besar terhadap proses perpindahan sedimen di perairan. Gelombang laut yang yang membentuk sudut terhadap garis pantai menyebabkan arus sepanjang pantai Transpor sedimen yang disebabkan oleh arus sepanjang panti sering menimbulkan permasalahan erosi pantai dan pendangkalan perairan. Perairan Teluk Awur memiliki bentuk teluk dan tanjung yang memungkinkan terjadinya arus sepanjang pantai. Potensi adanya proses erosi dan sedimentasi di perairan Teluk Awur membuat pentingnya kajian mengenai pola sebaran sedimen tersuspensi. Penelitian ini mampu menjelaskan tentang pola sebaran sedimen tersuspensi di perairan Teluk Awur, Kecamatan Tahunan, Kabupaten Jepara. Metode yang digunakan untuk penentuan sedimen tersuspensi menggunakan pengindraan jauh dan data yang digunakan yaitu citra satelit landsat-8. Kandungan sedimen tersuspensi tertinggi berada di Desa Teluk Awur dan Desa Demaan. Kandungan tertinggi sebesar ± 67,54 mg/L dan semakin menjauhi pantai konsentrasi menurun. Tingginya kadungan sedimen tersuspensi dipengaruhi oleh proses mixing dan intensitas curah hujan. Suspended sediments are considered as sediments distributed by ocean currents. Current along the coast (longshore current) plays a major role in the process of transfer of sediment in the waters. Sea waves that form angles to the coastline cause currents along the coast Sediment transport caused by currents along the orphanage often cause erosion and coastal silting problems. The waters of Teluk Awur have the shape of bays and headlands which allow currents along the coast. The potential for erosion and sedimentation in the Awur Bay waters makes it important to study the pattern of suspended sediment distribution. This research is able to explain the pattern of suspended sediment distribution in Awur Bay waters, Annual District, Jepara Regency. The method used to determine suspended sediment uses remote sensing and the data used are Landsat-8 satellite imagery. The highest suspended sediment content was in Teluk Awur Village and Demaan Village. The highest content of ± 67.54 mg / L and increasingly away from the beach decreased concentration. The high suspended sediment content is influenced by the mixing process and the intensity of rainfall. 


2018 ◽  
Vol 350 (1-2) ◽  
pp. 20-30 ◽  
Author(s):  
Santiago Yepez ◽  
Alain Laraque ◽  
Jean-Michel Martinez ◽  
Jose De Sa ◽  
Juan Manuel Carrera ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Nagur Cherukuru ◽  
Patrick Martin ◽  
Nivedita Sanwlani ◽  
Aazani Mujahid ◽  
Moritz Müller

Coastal water quality degradation is a global challenge. Marine pollution due to suspended sediments and dissolved matter impacts water colour, biogeochemistry, benthic habitats and eventually human populations that depend on marine resources. In Sarawak (Malaysian Borneo), peatland-draining river discharges containing suspended sediments and dissolved organic carbon influence coastal water quality at multiple locations along the coast. Optical remote sensing is an effective tool to monitor coastal waters over large areas and across remote geographic locations. However, the lack of regional optical measurements and inversion models limits the use of remote sensing observations for water quality monitoring in Sarawak. To overcome this limitation, we have (1) compiled a regional spectral optical library for Sarawak coastal waters, (2) developed a new semi-analytical remote sensing model to estimate suspended sediment and dissolved organic carbon in coastal waters, and (3) demonstrated the application of our remote sensing inversion model on satellite data over Sarawak. Bio-optical data analysis revealed that there is a clear spatial variability in the inherent optical properties of particulate and dissolved matter in Sarawak. Our optical inversion model coupled with the Sarawak spectral optical library performed well in retrieving suspended sediment (bias = 3% and MAE = 5%) and dissolved organic carbon (bias = 3% and MAE = 8%) concentrations. Demonstration products using MODIS Aqua data clearly showed the influence of large rivers such as the Rajang and Lupar in discharging suspended sediments and dissolved organic carbon into coastal waters. The bio-optical parameterisation, optical model, and remote sensing inversion approach detailed here can now help improve monitoring and management of coastal water quality in Sarawak.


Sign in / Sign up

Export Citation Format

Share Document