sediment loads
Recently Published Documents


TOTAL DOCUMENTS

396
(FIVE YEARS 103)

H-INDEX

35
(FIVE YEARS 4)

Coral Reefs ◽  
2022 ◽  
Author(s):  
Albert Pessarrodona ◽  
Sterling B. Tebbett ◽  
Nestor E. Bosch ◽  
David R. Bellwood ◽  
Thomas Wernberg

2021 ◽  
pp. 1-22
Author(s):  
Timothy T. Barrows ◽  
Stephanie C. Mills ◽  
Kathryn Fitzsimmons ◽  
Robert Wasson ◽  
Robert Galloway

Abstract Only a small area of the Australian mainland was glaciated during the Pleistocene, whereas periglacial deposits are far more common, indicating that cold environments were extensive and a major influence on landscape evolution. Here we identify representative low-elevation examples of scree slopes and frost action, together with fans and valley fills, indicating pronounced erosion cycles during the Pleistocene. To date the deposits, we explore approaches using radiocarbon, optically stimulated luminescence, and profile dating using the cosmogenic nuclide 10Be. The radiocarbon and optical ages show that screes, alluvial valley fill, and fans were deposited between 66–13 ka during the coldest part of the last glacial cycle, and within the previous glacial cycle. Exposure dating indicates further landscape erosion cycles back to the mid Pleistocene. Together, the deposits indicate the frost cracking limit was ~1300 m lower at 680 ± 10 m and mean winter temperature was 8.2 ± 0.5°C colder than present. Periglacial conditions probably affected much of southeastern Australia. The treeless and dry conditions resulted in widespread erosion and increased run off. Combined with increased snow storage within catchments, rivers were paradoxically larger, with high seasonal discharge and sediment loads.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Majid Niazkar ◽  
Mohammad Zakwan

A data-driven relationship between sediment and discharge of a river is among the most erratic relationships in river engineering due to the existence of an inevitable scatter in sediment rating curves. Recently, Multigene Genetic Programming (MGGP), as a machine learning (ML) method, has been proposed to develop data-driven models for various phenomena in the field of hydrology and water resource engineering. The present study explores the capability of MGGP-based models to develop daily sediment ratings of two gauging sites with 30-year sediment-discharge data, which was utilized previously in the literature. The results obtained by MGGP were compared with those achieved by an empirical model and Artificial Neural Network (ANN). The coefficients of the empirical model were calibrated using linear and nonlinear regression models (Generalized Reduced Gradient (GRG) and the Modified Honey Bee Mating Optimization (MHBMO) algorithm). According to the comparative analysis, the mean absolute error (MAE) at the two gauging stations reduced from 516.54 to 519.23 obtained by nonlinear regression to 447.26 and 504.23 achieved by MGGP, respectively. Similarly, all other performance indices indicated the suitability and accuracy of MGGP in developing sediment ratings. Therefore, it was demonstrated that ML-based models, particularly MGGP-based models, outperformed the empirical models for estimating sediment loads.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3649
Author(s):  
Katharina Allion ◽  
Michael Gebel ◽  
Mario Uhlig ◽  
Stefan Halbfass ◽  
Stephan Bürger ◽  
...  

For particle-bound substances such as phosphorus, erosion is an important input pathway to surface waters. Therefore, knowledge of soil erosion by water and sediment inputs to water bodies at high spatial resolution is essential to derive mitigation measures at the regional scale. Models are used to calculate soil erosion and associated sediment inputs to estimate the resulting loads. However, validation of these models is often not sufficiently possible. In this study, sediment input was modeled on a 10 × 10 m grid for a subcatchment of the Kraichbach river in Baden-Wuerttemberg (Germany). In parallel, large-volume samplers (LVS) were operated at the catchment outlet, which allowed a plausibility check of the modeled sediment inputs. The LVS produced long-term composite samples (2 to 4 weeks) over a period of 4 years. The comparison shows a very good agreement between the modeled and measured sediment loads. In addition, the monitoring concept of the LVS offers the possibility to identify the sources of the sediment inputs to the water body. In the case of the Kraichbach river, it was found that around 67% of the annual sediment load in the water body is contributed by rainfall events and up to 33% represents dry-weather load. This study shows that the modeling approaches for calculating the sediment input provide good results for the test area Kraichbach and the transfer for a German wide modeling will produce plausible values.


2021 ◽  
Author(s):  
◽  
Taputukura Raea

<p>Land based-effects, including sedimentation are threatening estuarine and coastal systems globally. Ecological systems are faced with significant pressures from human activities including toxic pollution, eutrophication, habitat fragmentation and sedimentation. In recent years sediment inputs into marine systems have been greatly accelerated through land-based activities such as urban-land use, agriculture, coastal developments, large scale land clearances and farming. Effects of sedimentation on marine organisms include suffocation, reduced foraging efficiency and clogging of the gills of filter feeders.  In New Zealand, sedimentation is the most important land-based stressor on the coastal marine environment. The pāua (Haliotis iris), is an important macroalgal grazer and is one of New Zealand’s top 10 seafood exports. However, little is known about the effects suspended sediments have on H. iris. The aim of this thesis is to experimentally test the effects of suspended sediment on the growth, oxygen consumption and mucus production for H. iris, using sediment concentrations that would naturally occur within Wellington Harbour, New Zealand.  Suspended sediment had no significant effect on H. iris growth or oxygen consumption. However, exposure to suspended sediments significantly reduced mucus production in H. iris. There were also trends in the data to suggest that respiration in smaller H. iris was reduced by suspended sediments.  Limited studies have explored the effect of suspended sediments on gastropods, even though sedimentation is one of the most significant land based stressors on the marine environment, not only in New Zealand, but also worldwide. This study has led to a better understanding of the potential implications suspended sediment may incur for not only H. iris, but also Haliotis species in general.</p>


2021 ◽  
Author(s):  
◽  
Taputukura Raea

<p>Land based-effects, including sedimentation are threatening estuarine and coastal systems globally. Ecological systems are faced with significant pressures from human activities including toxic pollution, eutrophication, habitat fragmentation and sedimentation. In recent years sediment inputs into marine systems have been greatly accelerated through land-based activities such as urban-land use, agriculture, coastal developments, large scale land clearances and farming. Effects of sedimentation on marine organisms include suffocation, reduced foraging efficiency and clogging of the gills of filter feeders.  In New Zealand, sedimentation is the most important land-based stressor on the coastal marine environment. The pāua (Haliotis iris), is an important macroalgal grazer and is one of New Zealand’s top 10 seafood exports. However, little is known about the effects suspended sediments have on H. iris. The aim of this thesis is to experimentally test the effects of suspended sediment on the growth, oxygen consumption and mucus production for H. iris, using sediment concentrations that would naturally occur within Wellington Harbour, New Zealand.  Suspended sediment had no significant effect on H. iris growth or oxygen consumption. However, exposure to suspended sediments significantly reduced mucus production in H. iris. There were also trends in the data to suggest that respiration in smaller H. iris was reduced by suspended sediments.  Limited studies have explored the effect of suspended sediments on gastropods, even though sedimentation is one of the most significant land based stressors on the marine environment, not only in New Zealand, but also worldwide. This study has led to a better understanding of the potential implications suspended sediment may incur for not only H. iris, but also Haliotis species in general.</p>


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 632
Author(s):  
David Abrego ◽  
Emily J. Howells ◽  
Stephen D. A. Smith ◽  
Joshua S. Madin ◽  
Brigitte Sommer ◽  
...  

Reef-building corals show a marked decrease in total species richness from the tropics to high latitude regions. Several hypotheses have been proposed to account for this pattern in the context of abiotic and biotic factors, including temperature thresholds, light limitation, aragonite saturation, nutrient or sediment loads, larval dispersal constraints, competition with macro-algae or other invertebrates, and availability of suitable settlement cues or micro-algal symbionts. Surprisingly, there is a paucity of data supporting several of these hypotheses. Given the immense pressures faced by corals in the Anthropocene, it is critical to understand the factors limiting their distribution in order to predict potential range expansions and the role that high latitude reefs can play as refuges from climate change. This review examines these factors and outlines critical research areas to address knowledge gaps in our understanding of light/temperature interactions, coral-Symbiodiniaceae associations, settlement cues, and competition in high latitude reefs.


Sign in / Sign up

Export Citation Format

Share Document