scholarly journals An estimation method of the direct benefit of a waterlogging control project applicable to the changing environment

Author(s):  
L. Zengmei ◽  
Q. Guanghua ◽  
C. Zishen

Abstract. The direct benefit of a waterlogging control project is reflected by the reduction or avoidance of waterlogging loss. Before and after the construction of a waterlogging control project, the disaster-inducing environment in the waterlogging-prone zone is generally different. In addition, the category, quantity and spatial distribution of the disaster-bearing bodies are also changed more or less. Therefore, under the changing environment, the direct benefit of a waterlogging control project should be the reduction of waterlogging losses compared to conditions with no control project. Moreover, the waterlogging losses with or without the project should be the mathematical expectations of the waterlogging losses when rainstorms of all frequencies meet various water levels in the drainage-accepting zone. So an estimation model of the direct benefit of waterlogging control is proposed. Firstly, on the basis of a Copula function, the joint distribution of the rainstorms and the water levels are established, so as to obtain their joint probability density function. Secondly, according to the two-dimensional joint probability density distribution, the dimensional domain of integration is determined, which is then divided into small domains so as to calculate the probability for each of the small domains and the difference between the average waterlogging loss with and without a waterlogging control project, called the regional benefit of waterlogging control project, under the condition that rainstorms in the waterlogging-prone zone meet the water level in the drainage-accepting zone. Finally, it calculates the weighted mean of the project benefit of all small domains, with probability as the weight, and gets the benefit of the waterlogging control project. Taking the estimation of benefit of a waterlogging control project in Yangshan County, Guangdong Province, as an example, the paper briefly explains the procedures in waterlogging control project benefit estimation. The results show that the waterlogging control benefit estimation model constructed is applicable to the changing conditions that occur in both the disaster-inducing environment of the waterlogging-prone zone and disaster-bearing bodies, considering all conditions when rainstorms of all frequencies meet different water levels in the drainage-accepting zone. Thus, the estimation method of waterlogging control benefit can reflect the actual situation more objectively, and offer a scientific basis for rational decision-making for waterlogging control projects.

2004 ◽  
Vol 60 (6) ◽  
pp. 692-697 ◽  
Author(s):  
Yuichi Michiue ◽  
Akira Sato

The structure of Na0.8Ti1.2Ga4.8O10 was determined by means of single-crystal X-ray diffraction at 173 and 123 K and reinvestigated at 299 K. The host structure containing one-dimensional tunnels was retained over the temperatures examined, while significant changes were observed in the probability density distribution of Na+ ions in the tunnel. The refinement based on the local structure model with the deviated Na+ ion neighboring the vacancy gave a similar result to that from the conventional model, but with reduced standard uncertainties of the structural parameters for the Na+ ions. The potential barrier for the Na+ ion hopping between adjacent cavities was estimated to be ca 30–40 meV from the joint probability density function of deviated Na+ ions.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 472
Author(s):  
Jue Lin-Ye ◽  
Manuel García-León ◽  
Vicente Gràcia ◽  
María Ortego ◽  
Piero Lionello ◽  
...  

Storm surges are one of the main drivers for extreme flooding at the coastal areas. Such events can be characterized with the maximum level in an extreme storm surge event (surge peak), as well as the duration of the event. Surge projections come from a barotropic model for the 1950–2100 period, under a severe climate change scenario (RCP 8.5) at the northeastern Spanish coast. The relationship of extreme storm surges to three large-scale climate patterns was assessed: North Atlantic Oscillation ( N A O ), East Atlantic Pattern ( E A W R ), and Scandinavian Pattern ( S C ). The statistical model was built using two different strategies. In Strategy #1, the joint probability density was characterized by a moving-average series of stationary Archimedean copula, whereas in Strategy #2, the joint probability density was characterized by a non-stationary probit copula. The parameters of the marginal distribution and the copula were defined with generalized additive models. The analysis showed that the mean values of surge peak and event duration were constant and were independent of the proposed climate patterns. However, the values of N A O and S C influenced the threshold and the storminess of extreme events. According to Strategy #1, the variance of the surge peak and event duration increased with a fast shift of negative S C and a positive N A O , respectively. Alternatively, Strategy #2 showed that the variance of the surge peak increased with a positive E A W R . Both strategies coincided in that the joint dependence of the maximum surge level and the duration of extreme surges ranged from low to medium degree. Its mean value was stationary, and its variability was linked to the geographical location. Finally, Strategy #2 helped determine that this dependence increased with negative N A O .


2020 ◽  
Vol 43 (1) ◽  
pp. 3-20
Author(s):  
Mohammad Bolbolian Ghalibaf

Mutual information (MI) can be viewed as a measure of multivariate association in a random vector. However, the estimation of MI is difficult since the estimation of the joint probability density function (PDF) of non Gaussian distributed data is a hard problem. Copula function is an appropriate tool for estimating MI since the joint probability density function ofrandom variables can be expressed as the product of the associated copula density function and marginal PDF’s. With a little search, we find that the proposed copulas-based mutual information is much more accurate than conventional methods such as the joint histogram and Parzen window-based MI. In this paper, by using the copulas-based method, we compute MI forsome family of bivariate distribution functions and study the relationship between Kendall’s tau correlation and MI of bivariate distributions. Finally, using a real dataset, we illustrate the efficiency of this approach.


Sign in / Sign up

Export Citation Format

Share Document