scholarly journals Assessment of Soil Erosion Vulnerability in the Heavily Populated and Ecologically Fragile Communities in Motozintla De Mendoza, Chiapas, Mexico

Author(s):  
Selene B. González-Morales ◽  
Alex Mayer ◽  
Neptalí Ramírez-Marcial

Abstract. The physical aspects and knowledge of soil erosion in six communities in rural Chiapas, Mexico were assessed. Average erosion rates estimated with the RUSLE model ranged from 200 to 1,200 ha−1 yr−1. Most erosion rates are relatively high due to steep slopes, sandy soils and bare land cover. The lowest rates occur where corn is cultivated for much of the year and slopes are relatively low. The results of a knowledge, attitudes and practices (KAP) survey showed that two-thirds of respondents believed that the major cause of soil erosion was hurricanes or rainfall and only 14 % of respondents identified human activities as causes of erosion. Forty-two percent of respondents indicated that the responsibility for solving soil erosion problems lies with government, as opposed to 26 % indicating that the community is responsible. More than half of respondents believed that reforestation is a viable option for reducing soil erosion, but only a third of respondents were currently applying reforestation practices and another one-third indicated that they were not following any conservation practices. The KAP results were used to assess the overall level of knowledge and interest in soil erosion problems and their solutions by compiling negative responses. The community of Barrio Vicente Guerrero may be most vulnerable to soil erosion, since it had the highest average negative response and the second highest soil erosion rate. However, Poblado Cambil had the highest estimated soil erosion rate and a relatively low average negative response rate, suggesting that soil conservation efforts should be prioritized for this community. We conclude that as long as the economic and productive needs of the communities are not solved simultaneously, the risk of soil erosion will increase in the future, which threatens the survival of these communities.

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Veera Narayana Balabathina ◽  
R. P. Raju ◽  
Wuletaw Mulualem ◽  
Gedefaw Tadele

Abstract Background Soil erosion is one of the major environmental challenges and has a significant impact on potential land productivity and food security in many highland regions of Ethiopia. Quantifying and identifying the spatial patterns of soil erosion is important for management. The present study aims to estimate soil erosion by water in the Northern catchment of Lake Tana basin in the NW highlands of Ethiopia. The estimations are based on available data through the application of the Universal Soil Loss Equation integrated with Geographic Information System and remote sensing technologies. The study further explored the effects of land use and land cover, topography, soil erodibility, and drainage density on soil erosion rate in the catchment. Results The total estimated soil loss in the catchment was 1,705,370 tons per year and the mean erosion rate was 37.89 t ha−1 year−1, with a standard deviation of 59.2 t ha−1 year−1. The average annual soil erosion rare for the sub-catchments Derma, Megech, Gumara, Garno, and Gabi Kura were estimated at 46.8, 40.9, 30.9, 30.0, and 29.7 t ha−1 year−1, respectively. Based on estimated erosion rates in the catchment, the grid cells were divided into five different erosion severity classes: very low, low, moderate, high and extreme. The soil erosion severity map showed about 58.9% of the area was in very low erosion potential (0–1 t ha−1 year−1) that contributes only 1.1% of the total soil loss, while 12.4% of the areas (36,617 ha) were in high and extreme erosion potential with erosion rates of 10 t ha−1 year−1 or more that contributed about 82.1% of the total soil loss in the catchment which should be a high priority. Areas with high to extreme erosion severity classes were mostly found in Megech, Gumero and Garno sub-catchments. Results of Multiple linear regression analysis showed a relationship between soil erosion rate (A) and USLE factors that soil erosion rate was most sensitive to the topographic factor (LS) followed by the support practice (P), soil erodibility (K), crop management (C) and rainfall erosivity factor (R). Barenland showed the most severe erosion, followed by croplands and plantation forests in the catchment. Conclusions Use of the erosion severity classes coupled with various individual factors can help to understand the primary processes affecting erosion and spatial patterns in the catchment. This could be used for the site-specific implementation of effective soil conservation practices and land use plans targeted in erosion-prone locations to control soil erosion.


Solid Earth ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Selene B. González-Morales ◽  
Alex Mayer ◽  
Neptalí Ramírez-Marcial

Abstract. Variability in physical rates and local knowledge of soil erosion was assessed across six rural communities in the Sierra Madre del Sur, Chiapas, Mexico. The average erosion rate estimated using the RUSLE model is 274 t ha−1 yr−1, with the estimated erosion rates ranging from 28 to 717 t ha−1 yr−1. These very high erosion rates are associated with high rainfall erosivity (17 000 MJ mm ha−1 h−1 yr−1) and steep slopes (mean slope  =  67 %). Many of the highest soil erosion rates are found in communities that are dominated by forestland, but where most of the tree cover has been removed. Conversely, lower erosion rates are often found where corn is cultivated for most of the year. According to the results of the soil erosion KAP (knowledge, attitude and practices) survey, awareness of the concept of soil erosion was reasonably high in all of the communities, but awareness of the causes of erosion was considerably lower. More than half of respondents believed that reforestation is a viable option for reducing soil erosion, but only a third of respondents were currently implementing reforestation practices. Another third of the respondents indicated that they were not following any soil conservation practices. Respondents indicated that adoption of government reforestation efforts have been hindered by the need to clear their land to sell forest products or cultivate corn. Respondents also mentioned the difficulties involved with obtaining favorable tree stocks for reforestation. The KAP results were used to assess the overall level of motivation to solve soil erosion problems by compiling negative responses. The relationship between the magnitude of the soil erosion problem and the capacity to reduce soil erosion is inconsistent across the communities. One community, Barrio Vicente Guerrero, had the highest average negative response rate and the second highest soil erosion rate, indicating that this community is particularly vulnerable.


2020 ◽  
Author(s):  
Jian Hu ◽  
Yihe Lü ◽  
Bojie Fu ◽  
Alexis J Comber ◽  
Lianhai Wu ◽  
...  

<p>Soil erosion, contributing to land degradation, was identified as an essential driving factor for the evolution of Earth’s critical zone. Although runoff plots along the slope and weirs on river valleys are often used to monitor short-term soil and water loss, it is usually difficult to evaluate the long-term soil loss rates across spatial scales. The <sup>137</sup>Cs tracer can effectively measure the long-term soil erosion rates but its capability to quantify regional soil erosion characteristics and the driving mechanisms remains a big challenge. To deal with this gap, we integrated and synthesized 61 peer-reviewed articles of soil erosion research by using <sup>137</sup>Cs tracer methods in the Loess Plateau of China to reveal the regional variability of soil erosion and the effects of land uses on (a) reference <sup>137</sup>Cs inventory, (b) <sup>137</sup>Cs soil profile distribution and (c) <sup>137</sup>Cs-derived total measured erosion rate. The results showed that reference <sup>137</sup>Cs inventory range from 900 to 1750 Bq/m<sup>2</sup> with a mean value of 1351 Bq/m<sup>2</sup>. The reference <sup>137</sup>Cs inventory decreased significantly with the increase of latitude and longitude (p<0.001), while it didn’t change obviously with the mean annual precipitation and temperature. The assumption of <sup>137</sup>Cs tracing method was supported by <sup>137</sup>Cs soil profile distribution under tillage and un-disturbed land. Tillage land was considered to have uniform distribution in soil profile and a similar exponential distribution of <sup>137</sup>Cs content can be found in terrace and no-tillage land. Furthermore, <sup>137</sup>Cs loss percent had a significant positive relationship with soil erosion rate (p<0.001). Average long-term soil erosion rate of cropland was more than 15000 t/(km<sup>2</sup>·a) and significantly higher than no-tillage land (5462.52 t/(km<sup>2</sup>·a) including that of grassland (3890.86 t/(km<sup>2</sup>·a)), forest (>6000 t/(km<sup>2</sup>·a)), and terrace (<5000 t/(km<sup>2</sup>·a)) (p<0.001). The average long-term soil erosion rate of cropland presented high spatial variability and loess hill and gully region had significantly higher average long-term soil erosion rate on cropland due to the coupling effects between heavy rainfall and steep slope. Appropriate reference sites and soil erosion conversion models were important factors for accurately quantifying the long-term soil erosion while the variation of climate, land uses, and geomorphic types had significant impacts on the spatial distribution of erosion rates. Our study can facilitate the understanding of the <sup>137</sup>Cs tracing method for long-term soil erosion rate and its spatial pattern, which can be supportive for soil and water conservation planning and relevant policy-making.</p>


Author(s):  
Haiyan Fang ◽  
Zemeng Fan

Impact of land use and land cover (LULC) change on soil erosion is still imperfectly understood, especially in northeastern China (NEC). Based on the Revised Universal Loss Equation (RUSLE), the variability of soil erosion at different spatial scales following land use changes in1980, 1990, 2000, 2010, and 2017 was analyzed. The regionally spatial patterns of soil loss coincided with the topography, rainfall erosivity, soil erodibility, and use patterns, and around 45% soil loss came from arable land. Regionally, soil erosion rates increased from 1980 to 2010 and decreased from 2010 to 2017, ranging from 3.91 to 4.45 t ha-1 yr-1 with an average of 4.22 t ha-1 yr-1 in 1980-2017. The rates of soil erosion less than 1.41 t ha-1 yr-1 decreased from 1980 to 2010, and increased from 2010 to 2017, and opposite changing patterns occurred in higher erosion classes (i.e., above 5 t ha-1 yr-1). At a provincial scale, Liaoning Province experienced the highest soil erosion rate of 9.43 t ha-1 yr-1, followed by Jilin Province, the east Inner Mongolia, and Heilongjing Province. Arable land continuously increased at the expense of forest in the high-elevation and steep-slope areas from 1980 to 2010, and decreased from 2010 to 2017, resulting in increased areas with erosion rates higher than 7.05 t ha-1 yr-1. At a county scale, around 75% of the countries had soil erosion rate higher than its tolerance level. The county numbers with higher erosion rate increased in 1980-2010 and decreased in 2010- 2017, resulting from the sprawl and withdrawal of arable land. The results indicate that appropriate policies can control soil loss through limiting arable land sprawl in areas of unfavorable regions in the NEC.


Author(s):  
Haiyan Fang ◽  
Zemeng Fan

Impact of land use and land cover change on soil erosion is still imperfectly understood, especially in northeastern China where severe soil erosion has occurred since the 1950s. It is important to identify temporal changes of soil erosion for the black soil region at different spatial scales. In the present study, potential soil erosion in northeastern China was estimated based on the Revised Universal Loss Equation by integrating satellite images, and the variability of soil erosion at different spatial scales following land use changes in 1980, 1990, 2000, 2010, and 2017 was analyzed. The regionally spatial patterns of soil loss coincided with the topography, rainfall erosivity, soil erodibility, and use patterns, and around 45% of soil loss came from arable land. Regionally, soil erosion rates increased from 1980 to 2010 and decreased from 2010 to 2017, ranging from 3.91 to 4.45 Mg ha−1 yr−1 with an average of 4.22 Mg ha−1 yr−1 in 1980–2017. Areas with a rate of soil erosion less than 1.41 Mg ha−1 yr−1 decreased from 1980 to 2010 and increased from 2010 to 2017, and the opposite changing patterns occurred in higher erosion classes. Arable land continuously increased at the expense of forest in the high-elevation and steep-slope areas from 1980 to 2010, and decreased from 2010 to 2017, resulting in increased areas with erosion rates higher than 7.05 Mg ha−1 yr−1. At a provincial scale, Liaoning Province experienced the highest soil erosion rate of 9.43 Mg ha−1 yr−1, followed by Jilin Province, the eastern Inner Mongolia Autonomous Region, and Heilongjiang Province. At a county scale, around 75% of the counties had a soil erosion rate higher than the tolerance level. The county numbers with higher erosion rate increased in 1980–2010 and decreased in 2010–2017, resulting from the sprawl and withdrawal of arable land.


2019 ◽  
Vol 11 (12) ◽  
pp. 3252 ◽  
Author(s):  
Guokun Chen ◽  
Zengxiang Zhang ◽  
Qiankun Guo ◽  
Xiao Wang ◽  
Qingke Wen

Regional soil loss assessment is the critical method of incorporating soil erosion into decision-making associated with land resources management and soil conservation planning. However, data availability has limited its application for mountainous areas. To obtain a clear understanding of soil erosion in Yunnan, a pixel-based estimation was employed to quantify soil erosion rate and the benefits of soil conservation measures based on Chinese Soil Loss Equation (CSLE) and data collected in the national soil erosion survey. Results showed that 38.77% of the land was being eroded at an erosion rate higher than the soil loss tolerance, the average soil erosion rate was found to be 12.46 t∙ha−1∙yr−1, resulting in a total soil loss of 0.47 Gt annually. Higher erosion rates mostly occurred in the downstream areas of the major rivers as compared to upstream areas, especially for the southwest agricultural regions. Rain-fed cropland suffered the most severe soil erosion, with a mean erosion rate of 47.69 t∙ha−1∙yr−1 and an erosion ratio of 64.24%. Lands with a permanent cover (forest, shrub, and grassland) were mostly characterized by erosion rates an order of magnitude lower than those from rain-fed cropland, except for erosion from sparse woods, which was noticeable and should not be underestimated. Soil loss from arable land, woodland and grassland accounted for 52.24%, 35.65% and 11.71% of the total soil loss, respectively. We also found significant regional differences in erosion rates and a close relationship between erosion and soil conservation measures adopted. The CSLE estimates did not compare well with qualitative estimates from the National Soil Erosion Database of China (NSED-C) and only 47.77% of the territory fell within the same erosion intensity for the two approaches. However, the CSLE estimates were consistent with the results from a national survey and local assessments under experimental plots. By advocating of soil conservation measures and converting slope cropland into grass/forest and terraced field, policy interventions during 2006–2010 have reduced soil erosion on rain-fed cropland by 20% in soil erosion rate and 32% in total soil loss compared to the local assessments. The quantitative CSLE method provides a reliable estimation, due to the consideration of erosion control measures and is potentially transferable to other mountainous areas as a robust approach for rapid assessment of sheet and rill erosion.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
S. I. Ahmed ◽  
R. P. Rudra ◽  
B. Gharabaghi ◽  
K. Mackenzie ◽  
W. T. Dickinson

This study investigates the effect of rainfall temporal distribution pattern within a storm event on soil erosion rate and the possibility of using rain power type model for rainfall erosivity. Various rainfall distribution patterns, simulated by rainfall simulator, were used on 1.0 m2 plot of silica sand and loam soil with a minimum of three replications. The results show that the soil erosion rates spiked following every sharp increase in rainfall intensity followed by a gradual decline to a steady erosion rate. Transient effects resulted in the soil erosion rates for an oscillatory rainfall distribution to be more than two fold higher than those obtained for a steady-state rainfall intensity event with same duration and same average rainfall intensity. The 3-parameter and 4-parameter rain power models were developed for a process-based measure of rainfall erosivity. The 4 parameter model yielded better match with the observed data and predicted soil erosion rates more accurately for silica sand under all rainfall distributions, and good results for loam soil under low intensity rainfall. More research is necessary to improve the accuracy of soil erosion prediction models for a wider range of rainfall distributions.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shamsollah Ayoubi ◽  
Nafiseh Sadeghi ◽  
Farideh Abbaszadeh Afshar ◽  
Mohammad Reza Abdi ◽  
Mojtaba Zeraatpisheh ◽  
...  

Abstract Background As one of the main components of land-use change, deforestation is considered the greatest threat to global environmental diversity with possible irreversible environmental consequences. Specifically, one example could be the impacts of land-use changes from oak forests into agricultural ecosystems, which may have detrimental impacts on soil mobilization across hillslopes. However, to date, scarce studies are assessing these impacts at different slope positions and soil depths, shedding light on key geomorphological processes. Methods In this research, the Caesium-137 (137Cs) technique was applied to evaluate soil redistribution and soil erosion rates due to the effects of these above-mentioned land-use changes. To achieve this goal, we select a representative area in the Lordegan district, central Iran. 137Cs depth distribution profiles were established in four different hillslope positions after converting natural oak forests to rainfed farming. In each hillslope, soil samples from three depths (0–10, 10–20, and 20–50 cm) and in four different slope positions (summit, shoulder, backslope, and footslope) were taken in three transects of about 20 m away from each other. The activity of 137Cs was determined in all the soil samples (72 soil samples) by a gamma spectrometer. In addition, some physicochemical properties and the magnetic susceptibility (MS) of soil samples were measured. Results Erosion rates reached 51.1 t·ha− 1·yr− 1 in rainfed farming, whereas in the natural forest, the erosion rate was 9.3 t·ha− 1·yr− 1. Magnetic susceptibility was considerably lower in the cultivated land (χhf = 43.5 × 10− 8 m3·kg− 1) than in the natural forest (χhf = 55.1 × 10− 8 m3·kg− 1). The lower soil erosion rate in the natural forest land indicated significantly higher MS in all landform positions except at the summit one, compared to that in the rainfed farming land. The shoulder and summit positions were the most erodible hillslope positions in the natural forest and rainfed farming, respectively. Conclusions We concluded that land-use change and hillslope positions played a key role in eroding the surface soils in this area. Moreover, land management can influence soil erosion intensity and may both mitigate and amplify soil loss.


Author(s):  
Vianey Argüelles-Nava ◽  
María Alvarez-Bañuelos ◽  
Daniel Córdoba-Suárez ◽  
Clara Sampieri ◽  
María Ortiz-León ◽  
...  

To assess the knowledge, attitudes, and practices about the Zika virus in both students and workers at the University of Veracruz, an online survey was conducted. The participants were divided into two groups: one according to sex, the other according to whether they were workers or students. Their answers were classified into knowledge, attitudes, and practices and they were rated as low, medium, and high. The results showed that knowledge about Zika prevailing among the university population is considered as medium in 79.4% of the study population. Most respondents know that the mosquito spreads the Zika virus (98.8%) and the clinical characteristics, while sexual transmission by the virus is little known (36.85%). Both the univariate analysis (OR (CI5) 0.227 (0.070–0.735), p = 0.013] and multivariate analysis (OR (CI95) 0.234 (0.071–778), p = 0.018] showed that belonging to the health sciences area is related to having a greater knowledge about Zika. Despite the existing knowledge, a low level of prevention practices prevails in the whole community (55%). A medium level of knowledge about Zika prevailed, while proper implementation of preventive measures for Zika is low, despite the fact that the state of Veracruz—the place where the University is located—is an endemic area.


Sign in / Sign up

Export Citation Format

Share Document