ISRN Soil Science
Latest Publications


TOTAL DOCUMENTS

45
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

Published By Hindawi (International Scholarly Research Network)

2090-875x

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Robert Orangi Nyambati ◽  
Peter Asbon Opala

We tested the effects of triple superphosphate (TSP) and Minjingu phosphate rock (MPR), when applied at phosphorus (P) rates of 50 or 250 kg P ha−1 in a factorial combination with urea or Tithonia diversifolia green manure as nitrogen sources, on P availability and maize yields for two seasons at Nyabeda and Khwisero in Kenya. Phosphorus availability was determined by the Olsen method or sequential fractionation. There was no significant difference in Olsen P as influenced by TSP and MPR at 50 kg P ha−1 irrespective of the N source at both sites in both seasons. However, at 250 kg P ha−1, TSP gave significantly higher Olsen P than MPR. The labile P fractions generally followed the same trend as the Olsen P. Maize yields increased with increasing amount of P applied. Generally, there was no significant difference between TSP and MPR on maize yields irrespective of the N source. The Olsen-P, Resin-P, and sodium bicarbonate inorganic P correlated well with maize yields when TSP was used but the correlations between these P tests and maize yields for MPR were not consistent and therefore their use on soils treated with MPR should be exercised with caution.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Héctor Estrada-Medina ◽  
Francisco Bautista ◽  
Juan José María Jiménez-Osornio ◽  
José Antonio González-Iturbe ◽  
Wilian de Jesús Aguilar Cordero

Soils of the municipality of Hocabá, Yucatán, México, were identified according to both Mayan farmers’ knowledge and the World Reference Base for Soil Resources (WRB). To identify Maya soil classes, field descriptions made by farmers and semistructured interviews were utilized. WRB soils were identified by describing soil profiles and analyzing samples in the laboratory. Mayan farmers identified soils based on topographic position and surface properties such as colour and amount of rock fragments and outcrops. Farmers distinguished two main groups of soils: K'ankab or soils of plains and Boxlu’um or soils of mounds. K'ankab is a group of red soils with two variants (K'ankab and Haylu’um), whereas Boxlu’um is a group of dark soils with five variants (Tsek'el, Ch'ich'lu’um, Chaltun, Puslu’um, and Ch'och'ol). Soils on the plains were identified as Leptosoils, Cambisols, and Luvisols. Soils identified in mounds were Leptosols and Calcisols. Many soils identified by farmers could be more than one WRB unit of soil and vice versa; in these cases no direct relationship between both classification systems was possible. Mayan and WRB soil types are complementary; they should be used together to improve regional soil classifications, help transference of agricultural technologies, and make soil management decisions.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Xi Zhang ◽  
Feng Li ◽  
Tingting Liu ◽  
Chen Xu ◽  
Dechao Duan ◽  
...  

Heavy metals have adverse effects on soil ecology. Given the toxicity of heavy metals, there is an urgent need to select an appropriate indicator that will aid in monitoring their biological effects on soil ecosystems. By combining different monitoring techniques for various aspects of microbiology, the effects of heavy metals on soil microorganisms near a smelter were studied. Our goal was to determine whether proteins could be a proper indicator for soil pollution. This study demonstrated that the activities of acid phosphatase and dehydrogenase, as well as the levels of microbial biomass carbon and proteins, were negatively affected by heavy metals. In addition, significantly negative correlations were observed between these microbial indicators and heavy metals. Denaturing gradient gel electrophoresis analysis was used in this study to demonstrate that heavy metals also have a significantly negative effect on soil microbial diversity and community structure. The soil protein expression was similar across different soils, but a large quantity of presumably low molecular weight protein was observed only in contaminated soil. Based on this research, we determined that the soil protein concentration was more sensitive to heavy metals than acid phosphatase, dehydrogenase, or microbial biomass carbon because it was more dramatically decreased in the contaminated soils. Therefore, we concluded that the soil protein level has great potential to be a sensitive indicator of soil contamination. Further research is essential, particularly to identify the low molecular weight protein that only appears in contaminated soil, so that further insight can be gained into the responses of microbes to heavy metals.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ahmed A. Khalil

A field experiment was carried-out on a private farm at the Salah El-Din village, El-Bostan district, Nobaria, El-Behera Governorate, Egypt. The aim of this study was to evaluate the best combination of rock phosphate (RP), sulphur (S), organic manure, and phosphate dissolving bacteria (PDB) inoculation to enhance the availability of phosphorous from rock phosphate and their effects on yield of broad bean plants (cv. Luz doe Otono L.). It was found that either sulphur application or PDB inoculation with RP had a significant effect on broad bean yield and its quality. Application of RP and different soil amendments individually or together increased N, P, and K contents in straw and seeds of broad bean plant. The highest contents of the studied nutrients were found when the plants were fertilized by a mixture of RP and different soil amendments. Results also showed the important role of organic matter, sulphur, and PDB for releasing phosphorus from rock phosphate. The combination of soil amendments with RP as a natural P-source, has the possibility of saving significant quantities of industrialized inorganic phosphate fertilizers.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Luca Salvati

Land-Use Changes (LUCs) are the result of interacting environmental and socioeconomic factors. Although in southern Europe traditional agroforestry systems are an important component of the Mediterranean landscape, intensification and simplification of the rural space coupled with the increasing sensitivity to soil degradation are potentially harmful for the integrity of natural resources and biodiversity stock. The present study introduced a quantitative assessment of rural LUCs that occurred in a region devoted to agriculture and experiencing a progressively higher human impact from both urbanization and land abandonment. The assessment was carried out at the municipality scale along forty years (1970–2010) using data collected every ten years in the framework of the National Census of Agriculture. The Maximum potential Water Capacity (MWC) in the soil, taken as a proxy for agricultural soil quality, and an index of crop intensity have been introduced in the analysis as supplementary variables. A Multiway Factor Analysis (MFA) was developed to evaluate stability or dynamics in the investigated land-use classes. Results illustrate relevant changes in the rural landscape by identifying the classes “moving” towards better soils. An integrated evaluation of rural LUCs and soil resources based on long-time inventories available at an adequate spatial scale is a tool informing policies against soil degradation.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Samuel I. Haruna ◽  
Nsalambi V. Nkongolo

We assessed the spatial variability of soil physical properties in a clay-loam soil cropped to corn and soybean. The study was conducted at Lincoln University in Jefferson City, Missouri. Soil samples were taken at four depths: 0–10 cm, 10–20, 20–40, and 40–60 cm and were oven dried at 105°C for 72 hours. Bulk density (BDY), volumetric (VWC) and gravimetric (GWC) water contents, volumetric air content (VAC), total pore space (TPS), air-filled (AFPS) and water-filled (WFPS) pore space, the relative gas diffusion coefficient (DIFF), and the pore tortuosity factor (TORT) were calculated. Results showed that, in comparison to depth 1, means for AFPS, Diff, TPS, and VAC decreased in Depth 2. Opposingly, BDY, Tort, VWC, and WFPS increased in depth 2. Semivariogram analysis showed that GWC, VWC, BDY, and TPS in depth 2 fitted to an exponential variogram model. The range of spatial variability (A0) for BDY, TPS, VAC, WFPS, AFPS, DIFF, and TORT was the same (25.77 m) in depths 1 and 4, suggesting that these soil properties can be sampled together at the same distance. The analysis also showed the presence of a strong (≤25%) to weak (>75%) spatial dependence for soil physical properties.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
D. Murray Brown ◽  
Humaira Dadfar ◽  
David J. Fallow ◽  
Robert J. Gordon ◽  
John D. Lauzon ◽  
...  

The temporal variability in estimated water surplus in 12 climatic regions of the province of Ontario, Canada, and its spatial distribution throughout most of the province are discussed in this paper. Surplus water is that which results from precipitation that runs off the land surface and that which drains through the soil profile to the water table and through subsurface drainage. A one-dimensional, deterministic model (DRAINMOD) that simulates soil water flow, including plant uptake, evapotranspiration, and freeze/thaw conditions, was used to estimate the water surplus. Simulations were performed using daily climatic data from January 1954 to December 2001 for each region. A reference corn crop and the predominant local soil conditions in each region, with the hydraulic properties for each layer in the soil profile, were used as model inputs. There was considerable year-to-year variability in annual water surplus in all regions caused by both precipitation and soil conditions. It was the least (~150 mm) in three regions and it exceeded 350 mm in another three regions, where winter snowfall is the greatest as a result of these regions being in the lea of one of the Great Lakes. The variability in water surplus generally increased as average water surplus increased.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Xi Zhang ◽  
Feng Li ◽  
Tingting Liu ◽  
Cheng Peng ◽  
Dechao Duan ◽  
...  

Polychlorinated biphenyls (PCBs) are typical representative of chlorinated organic pollutants. Given the toxicity of PCBs, there is an urgent need to select an appropriate indicator to monitor their biological effects on soil ecosystems. For this purpose, we investigated the impacts of PCBs on soil protein and the potential of using protein as a biological indicator to assess soil contamination due to PCBs. This study demonstrated that soil protein concentration and expression were negatively affected by PCBs. In addition, significantly (P<0.01) negative correlation was observed between protein concentration and PCBs. Subsequently, protein size distribution separated by SDS-PAGE revealed that with the increase in PCBs concentration there are less large molecular weight proteins and more low molecular weight proteins (<40 kD). Consequently, soil protein level has the potential to be an indicator of soil contamination, and these low molecular weight proteins have significant meaning for getting insight into the ecological effects of PCBs on the soil environment.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Athanase Nduwumuremyi ◽  
Vicky Ruganzu ◽  
Jayne Njeri Mugwe ◽  
Athanase Cyamweshi Rusanganwa

Sustainable agriculture is threatened by the widespread soil acidity in many arable lands of Rwanda. The aim of this study was to determine the quality of unburned limes and their effects on soil acidity and base cations in acidic soils of high land of Buberuka. The lime materials used were agricultural burned lime and three unburned lime materials, Karongi, Musanze, and Rusizi. The test crop was Irish Potato. All lime materials were analyzed for Calcium Carbonate Equivalent (CCE) and Fineness. A field trial in Randomized Complete Block Design was established in 2011 at Rwerere research station. The treatments comprised of the four lime materials applied at four levels: 0, 1.4, 2.8, and 4.3 t ha−1 of CCE. Soil cations (Ca2+, Mg2+, K+, and Na+) were determined by extraction method using atomic absorption spectrophotometer for Ca and Mg and flame photometer for K and Na. The Al3+ was determined using potassium chloride extraction method. Experimental soil baseline showed that the soil was very strongly acidic (2.8 cmol kg−1 Al3+). The unburned limes were significantly (P<0.001) different in terms of CCE and fineness. A higher CCE was recorded in agricultural burned and Rusizi unburned limes (86.36% and 85.46%, resp.). In terms of fineness, agricultural burned and Musanze unburned lime were higher (70.57 and 63.03%, resp.). Soil acidity significantly affected from 4.8 to 5.6 pH and exchangeable Al reduced from 2.8 cmol kg−1 to 0.16 cmol kg−1 of Al3+. Similarly all cations affected by unburned limes application, significantly (P<0.001) Ca saturation increased from 27.44 to 71.81%, Mg saturation from 11.18 to 36.87% and significantly (P<0.001) Al saturation reduced from 58.45 to 3.89%. The increase of Mg saturation was observed only with Karongi unburned lime application. This study recommends therefore, the use of 2.8 t ha−1 of CaCO3 of Rusizi or Musanze unburned lime as alternative to the agricultural burned lime for improving soil acidity and base cations in acidic soils.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mahmoud Ahmed

This paper presents the results of a study using a transparent soil experimental technique and numerical modeling to detect 3D deformations resulting from submerged cavities that lead to a sinkhole. Excessive deformations from underground activity beneath highway pavements could lead to sinkhole collapse. The formation of a sinkhole is often sudden and can lead to extensive damage and loss of life, especially in urban areas. The use of transparent soils permitted the visualization of internal ground deformations which allowed for comprehensive evaluation of the extension of failure. A series of finite element analyses have also been carried out for the tests conditions. The observed sinkhole, at the surface, is found to be a small indicator of the final size and magnitude of the internal deformations as a subsequent funnel-shaped depression developed with a hole at the center. The modeling results emphasized the need to extend the repair zone following sinkhole collapse by a minimum distance that equals twice the cavity diameter away and ahead of the developed hole. Results of this study are believed to be of practical interest for predicting surface and internal ground deformations following sinkhole collapse which could be useful for the stability assessment of underground utilities and the development of a restoration plan after collapse occurred. The results also provided approximate bounds to areas affected by the sinkhole allowing for collapse risk to be assessed.


Sign in / Sign up

Export Citation Format

Share Document