scholarly journals Review of the manuscript: “The imprints of contemporary mass redistribution on regional sea level and vertical land motion observations” by Thomas Frederikse, Felix Landerer and Lambert Caron.

2019 ◽  
Author(s):  
Anonymous
2019 ◽  
Author(s):  
Thomas Frederikse ◽  
Felix W. Landerer ◽  
Lambert Caron

Abstract. We derive trends and monthly anomalies in global and regional sea-level and solid-earth deformation that result from mass redistribution observed by GRACE and an ensemble of GIA models. With this ensemble, we do not only compute mean changes, but we also derive uncertainty estimates of all quantities. We find that over the GRACE era, the trend in land mass change has led to a sea-level trend of 1.28–1.82 mm/yr, which is driven by ice mass loss, while terrestrial water storage has increased over the GRACE period, causing a sea-level drop of 0.11–0.47 mm/yr. This redistribution of mass causes sea-level and deformation patterns that do not only vary in space, but also in time. The temporal variations affect GNSS-derived vertical land motion (VLM) observations, which are now commonly used to correct tide-gauge observations. We find that for many GNSS stations, including GNSS stations in coastal locations, solid-earth deformation resulting from present-day mass redistribution causes trends in the order of 1 mm/yr or higher. Since GNSS records often only span a few years, these trends are generally not representative for the tide-gauge records, which often span multiple decades, and extrapolating them backwards in time could cause substantial biases. To avoid this possible bias, we computed trends and associated uncertainties for 8228 GNSS stations after removing deformation due to GIA and present-day mass redistribution. With this separation, we are able to explain a large fraction of the discrepancy between observed sea-level trends at multiple long tide-gauge records and the reconstructed global-mean sea-level trend from recent reconstructions.


Solid Earth ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 1971-1987 ◽  
Author(s):  
Thomas Frederikse ◽  
Felix W. Landerer ◽  
Lambert Caron

Abstract. Observations from permanent Global Navigation Satellite System (GNSS) stations are commonly used to correct tide-gauge observations for vertical land motion (VLM). We combine GRACE (Gravity Recovery and Climate Experiment) observations and an ensemble of glacial isostatic adjustment (GIA) predictions to assess and evaluate the impact of solid-Earth deformation (SED) due to contemporary mass redistribution and GIA on VLM trends derived from GNSS stations. This mass redistribution causes relative sea-level (RSL) and SED patterns that not only vary in space but also exhibit large interannual variability signals. We find that for many stations, including stations in coastal locations, this deformation causes VLM trends on the order of 1 mm yr−1 or higher. In multiple regions, including the Amazon Basin and large parts of Australia, the SED trend flips sign between the first half and second half of the 15-year GRACE record. GNSS records often only span a few years, and due to these interannual variations SED causes substantial biases when the linear trends in these short records are extrapolated back in time. We propose a new method to avoid this potential bias in the VLM-corrected tide-gauge record: instead of correcting tide-gauge records for the observed VLM trend, we first remove the effects from GIA and contemporary mass redistributions from the VLM observations before computing the VLM trend. This procedure reduces the extrapolation bias induced by SED, and it also avoids the bias due to sea-floor deformation: SED includes net sea-floor deformation, which is ignored in global-mean sea-level reconstructions based on VLM-corrected tide-gauge data. We apply this method to 8166 GNSS stations. With this separation, we are able to explain a large fraction of the discrepancy between observed sea-level trends at multiple long tide-gauge records and the global-mean sea-level trend from recent reconstructions.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
T. C. Harvey ◽  
B. D. Hamlington ◽  
T. Frederikse ◽  
R. S. Nerem ◽  
C. G. Piecuch ◽  
...  

AbstractRegional sea-level changes are caused by several physical processes that vary both in space and time. As a result of these processes, large regional departures from the long-term rate of global mean sea-level rise can occur. Identifying and understanding these processes at particular locations is the first step toward generating reliable projections and assisting in improved decision making. Here we quantify to what degree contemporary ocean mass change, sterodynamic effects, and vertical land motion influence sea-level rise observed by tide-gauge locations around the contiguous U.S. from 1993 to 2018. We are able to explain tide gauge-observed relative sea-level trends at 47 of 55 sampled locations. Locations where we cannot explain observed trends are potentially indicative of shortcomings in our coastal sea-level observational network or estimates of uncertainty.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jinping Wang ◽  
John A. Church ◽  
Xuebin Zhang ◽  
Xianyao Chen

AbstractThe ability of climate models to simulate 20th century global mean sea level (GMSL) and regional sea-level change has been demonstrated. However, the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) sea-level projections have not been rigorously evaluated with observed GMSL and coastal sea level from a global network of tide gauges as the short overlapping period (2007–2018) and natural variability make the detection of trends and accelerations challenging. Here, we critically evaluate these projections with satellite and tide-gauge observations. The observed trends from GMSL and the regional weighted mean at tide-gauge stations confirm the projections under three Representative Concentration Pathway (RCP) scenarios within 90% confidence level during 2007–2018. The central values of the observed GMSL (1993–2018) and regional weighted mean (1970–2018) accelerations are larger than projections for RCP2.6 and lie between (or even above) those for RCP4.5 and RCP8.5 over 2007–2032, but are not yet statistically different from any scenario. While the confirmation of the projection trends gives us confidence in current understanding of near future sea-level change, it leaves open questions concerning late 21st century non-linear accelerations from ice-sheet contributions.


2021 ◽  
Author(s):  
Gustav Pallisgaard-Olesen ◽  
Vivi Kathrine Pedersen ◽  
Natalya Gomez

<div> <p>The landscape in western Scandinavia has undergone dramatic changes through numerous glaciations during the Quaternary. These changes in topography and in the volumes of offshore sediment deposits, have caused significant isostatic adjustments and local sea level changes, owing to erosional unloading and depositional loading of the lithosphere. Mass redistribution from erosion and deposition also has the potential to cause significant pertubations of the geoid, resulting in additional sea-level changes. The combined sea-level response from these processes, is yet to be investigated in detail for Scandinavia.</p> </div><div> <p>In this study we estimate the total sea level change from late-Pliocene- Quaternary glacial erosion and deposition in the Scandinavian region, using a gravitationally self-consistent global sea level model that includes the full viscoelastic response of the solid Earth to surface loading and unloading. In addition to the total late Pliocene-Quaternary mass redistribution, we <span>also </span>estimate transient sea level changes related specifically to the two latest glacial cycles.</p> </div><div> <p>We utilize existing observations of offshore sediment thicknesses of glacial origin, and combine these with estimates of onshore glacial erosion and estimates of erosion on the inner shelf. Based on these estimates, we can define mass redistribution and construct a preglacial landscape setting.</p> </div><div> <p>Our preliminary results show <span>perturbations of</span> the local sea level up to ∼ 200 m since<span> the</span> late-Pliocene in the Norwegian Sea, suggesting that erosion and deposition ha<span>ve</span> influenced the local paleo sea level history in Scandinavia significantly.</p> </div>


2021 ◽  
Author(s):  
Milaa Murshan ◽  
Balaji Devaraju ◽  
Nagarajan Balasubramanian ◽  
Onkar Dikshit

<p>Satellite altimetry provides measurements of sea surface height of centimeter-level accuracy over open oceans. However, its accuracy reduces when approaching the coastal areas and over land regions. Despite this downside, altimetric measurements are still applied successfully in these areas through altimeter retracking processes. This study aims to calibrate and validate retracted sea level data of Envisat, ERS-2, Topex/Poseidon, Jason-1, 2, SARAL/AltiKa, Cryosat-2 altimetric missions near the Indian coastline. We assessed the reliability, quality, and performance of these missions by comparing eight tide gauge (TG) stations along the Indian coast. These are Okha, Mumbai, Karwar, and Cochin stations in the Arabian Sea, and Nagapattinam, Chennai, Visakhapatnam, and Paradip in the Bay of Bengal. To compare the satellite altimetry and TG sea level time series, both datasets are transformed to the same reference datum. Before the calculation of the bias between the altimetry and TG sea level time series, TG data are corrected for Inverted Barometer (IB) and Dynamic Atmospheric Correction (DAC). Since there are no prior VLM measurements in our study area, VLM is calculated from TG records using the same procedure as in the Technical Report NOS organization CO-OPS 065. </p><p>Keywords— Tide gauge, Sea level, North Indian ocean, satellite altimetry, Vertical land motion</p>


Sign in / Sign up

Export Citation Format

Share Document