scholarly journals Full waveform inversion of short-offset, band-limited seismic data inthe Alboran basin (SE Iberia)

2019 ◽  
Author(s):  
Clàudia Gras ◽  
Valentí Sallarès ◽  
Daniel Dagnino ◽  
C. Estela Jiménez ◽  
Adrià Meléndez ◽  
...  

Abstract. We present a high-resolution P-wave velocity model of the sedimentary cover and the uppermost basement until ~ 3 km depth obtained by full-waveform inversion of multichannel seismic data acquired with a 6 km-long streamer in the Alboran Sea (SE Iberia). The inherent non-linearity of the method, especially for short-offset, band-limited seismic data as this one, is circumvented by applying a data processing/modeling sequence consisting of three steps: (1) data re-datuming by back-propagation of the recorded seismograms to the seafloor; (2) joint refraction and reflection travel-time tomography combining the original and the re-datumed shot gathers; and (3) FWI of the original shot gathers using the model obtained by travel-time tomography as initial reference. The final velocity model shows a number of geological structures that cannot be identified in the travel-time tomography models or easily interpreted from seismic reflection images alone. A sharp strong velocity contrast accurately defines the geometry of the top of the basement. Several low-velocity zones that may correspond to the abrupt velocity change across steeply dipping normal faults are observed at the flanks of the basin. A 200–300 m thick, high-velocity layer embedded within lower velocity sediment may correspond to evaporites deposited during the Messinian crisis. The results confirm that the combination of data re-datuming and joint refraction and reflection travel-time inversion provides reference models that are accurate enough to apply full-waveform inversion to relatively short offset streamer data in deep water settings starting at field-data standard low frequency content of 6 Hz.

Solid Earth ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 1833-1855
Author(s):  
Clàudia Gras ◽  
Daniel Dagnino ◽  
Clara Estela Jiménez-Tejero ◽  
Adrià Meléndez ◽  
Valentí Sallarès ◽  
...  

Abstract. We present a high-resolution P-wave velocity model of the sedimentary cover and the uppermost basement to ∼3 km depth obtained by full-waveform inversion of multichannel seismic data acquired with a 6 km long streamer in the Alboran Sea (SE Iberia). The inherent non-linearity of the method, especially for short-offset, band-limited seismic data as this one, is circumvented by applying a data processing or modelling sequence consisting of three steps: (1) data re-datuming by back-propagation of the recorded seismograms to the seafloor; (2) joint refraction and reflection travel-time tomography combining the original and the re-datumed shot gathers; and (3) full-waveform inversion of the original shot gathers using the model obtained by travel-time tomography as initial reference. The final velocity model shows a number of geological structures that cannot be identified in the travel-time tomography models or easily interpreted from seismic reflection images alone. A sharp strong velocity contrast accurately defines the geometry of the top of the basement. Several low-velocity zones that may correspond to the abrupt velocity change across steeply dipping normal faults are observed at the flanks of the basin. A 200–300 m thick, high-velocity layer embedded within lower-velocity sediment may correspond to evaporites deposited during the Messinian crisis. The results confirm that the combination of data re-datuming and joint refraction and reflection travel-time inversion provides reference models that are accurate enough to apply full-waveform inversion to relatively short offset streamer data in deep-water settings starting at a field-data standard low-frequency content of 6 Hz.


2020 ◽  
Author(s):  
Gaurav Tomar ◽  
Christopher J. Bean ◽  
Satish C. Singh

<p>Rockall trough lies to the west of Ireland in NE Atlantic, it has a complex geology and has been debated for controversial geology for more than two decades. We have performed Full waveform inversion (FWI) on 2D seismic data set that is recorded in 2013-14 by using 10 km long streamer, this 2D seismic line is situated near the North-West margin in the Rockall Bank area. Full waveform inversion (FWI) is a powerful technique for obtaining elastic properties of the sub-surface from the seismic data. FWI provides properties of the sub-surface at the scale of the wavelength of the data set. We used travel time tomography on downward extrapolated data set to obtain a smooth starting velocity model for FWI. Downward continuation is a technique that enhances the first arrival and also reduces the computation time for forward modelling in FWI. The velocity model obtained from refraction travel time tomography, indicates the velocity from 1.6-4 km/s for the sediments and we have also observed very high velocity ~ 6-7.5 km/s just 3 km below sea-floor. We have performed FWI using these TTT velocity model as a starting model and inverted the refractions along with the wide angle reflections in the frequency range of 3-10 hz. FWI results gives the velocity of 6-7.2 km/s as well as defines geological structures that can be seen in the migrated seismic section. These high velocity structures could be a part of the continental crust and/or lower oceanic crustal igneous rocks like Gabbro.</p>


2020 ◽  
Author(s):  
Kajetan Chrapkiewicz ◽  
Michele Paulatto ◽  
Joanna Morgan ◽  
Mike Warner ◽  
Benjamin Heath ◽  
...  

<p>Detailed knowledge about geometry and physical properties of magmatic systems at arc volcanoes promises to better constrain models of magma differentiation, transit and storage in the crust, and to help assess volcanic hazard.</p><p>Unfortunately, low-velocity zones associated with melt accumulation are particularly difficult to image by conventional travel-time tomography due to its limited resolving power, resulting in blurred boundaries and underestimated velocity contrasts.</p><p>Here we alleviate these issues by applying full-waveform inversion (FWI) to study a magmatic system of Santorini - an active, semi-submerged volcano with a known record of large, caldera-forming eruptions.</p><p>We use a 3D wide-angle, multi-azimuth seismic dataset from the recent PROTEUS experiment acquired with ca. 150 ocean-bottom/land seismic stations and ca. 14,000 air-gun shots. We implement a finite-difference immersed boundary method to simulate reflections off the caldera’s irregular topography, and pressure-velocity conversion to take full advantage of the multi-component data. We perform inversion with careful data-selection, increasing frequency up to 6 Hz, and extensive quality-control based on a phase spatial-continuity criterion.</p><p>A final P-wave velocity model of the upper crust offers a high-resolution image of Santorini magmatic and hydrothermal systems with pronounced low-velocity zones due to a high melt and water content respectively. The features are better resolved and the velocity contrasts distinctly sharper than in the starting model obtained with travel-time tomography. We also recover a previously undetected low velocity anomaly of >40% beneath Kolumbo - a submarine volcanic cone to the NE of Santorini caldera. We interpret this anomaly as a magmatic sill.</p>


Author(s):  
Ehsan Jamali Hondori ◽  
Chen Guo ◽  
Hitoshi Mikada ◽  
Jin-Oh Park

AbstractFull-waveform inversion (FWI) of limited-offset marine seismic data is a challenging task due to the lack of refracted energy and diving waves from the shallow sediments, which are fundamentally required to update the long-wavelength background velocity model in a tomographic fashion. When these events are absent, a reliable initial velocity model is necessary to ensure that the observed and simulated waveforms kinematically fit within an error of less than half a wavelength to protect the FWI iterative local optimization scheme from cycle skipping. We use a migration-based velocity analysis (MVA) method, including a combination of the layer-stripping approach and iterations of Kirchhoff prestack depth migration (KPSDM), to build an accurate initial velocity model for the FWI application on 2D seismic data with a maximum offset of 5.8 km. The data are acquired in the Japan Trench subduction zone, and we focus on the area where the shallow sediments overlying a highly reflective basement on top of the Cretaceous erosional unconformity are severely faulted and deformed. Despite the limited offsets available in the seismic data, our carefully designed workflow for data preconditioning, initial model building, and waveform inversion provides a velocity model that could improve the depth images down to almost 3.5 km. We present several quality control measures to assess the reliability of the resulting FWI model, including ray path illuminations, sensitivity kernels, reverse time migration (RTM) images, and KPSDM common image gathers. A direct comparison between the FWI and MVA velocity profiles reveals a sharp boundary at the Cretaceous basement interface, a feature that could not be observed in the MVA velocity model. The normal faults caused by the basal erosion of the upper plate in the study area reach the seafloor with evident subsidence of the shallow strata, implying that the faults are active.


Geophysics ◽  
2021 ◽  
pp. 1-52
Author(s):  
Yuzhu Liu ◽  
Xinquan Huang ◽  
Jizhong Yang ◽  
Xueyi Liu ◽  
Bin Li ◽  
...  

Thin sand-mud-coal interbedded layers and multiples caused by shallow water pose great challenges to conventional 3D multi-channel seismic techniques used to detect the deeply buried reservoirs in the Qiuyue field. In 2017, a dense ocean-bottom seismometer (OBS) acquisition program acquired a four-component dataset in East China Sea. To delineate the deep reservoir structures in the Qiuyue field, we applied a full-waveform inversion (FWI) workflow to this dense four-component OBS dataset. After preprocessing, including receiver geometry correction, moveout correction, component rotation, and energy transformation from 3D to 2D, a preconditioned first-arrival traveltime tomography based on an improved scattering integral algorithm is applied to construct an initial P-wave velocity model. To eliminate the influence of the wavelet estimation process, a convolutional-wavefield-based objective function for the preprocessed hydrophone component is used during acoustic FWI. By inverting the waveforms associated with early arrivals, a relatively high-resolution underground P-wave velocity model is obtained, with updates at 2.0 km and 4.7 km depth. Initial S-wave velocity and density models are then constructed based on their prior relationships to the P-wave velocity, accompanied by a reciprocal source-independent elastic full-waveform inversion to refine both velocity models. Compared to a traditional workflow, guided by stacking velocity analysis or migration velocity analysis, and using only the pressure component or other single-component, the workflow presented in this study represents a good approach for inverting the four-component OBS dataset to characterize sub-seafloor velocity structures.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R271-R293 ◽  
Author(s):  
Nuno V. da Silva ◽  
Gang Yao ◽  
Michael Warner

Full-waveform inversion deals with estimating physical properties of the earth’s subsurface by matching simulated to recorded seismic data. Intrinsic attenuation in the medium leads to the dispersion of propagating waves and the absorption of energy — media with this type of rheology are not perfectly elastic. Accounting for that effect is necessary to simulate wave propagation in realistic geologic media, leading to the need to estimate intrinsic attenuation from the seismic data. That increases the complexity of the constitutive laws leading to additional issues related to the ill-posed nature of the inverse problem. In particular, the joint estimation of several physical properties increases the null space of the parameter space, leading to a larger domain of ambiguity and increasing the number of different models that can equally well explain the data. We have evaluated a method for the joint inversion of velocity and intrinsic attenuation using semiglobal inversion; this combines quantum particle-swarm optimization for the estimation of the intrinsic attenuation with nested gradient-descent iterations for the estimation of the P-wave velocity. This approach takes advantage of the fact that some physical properties, and in particular the intrinsic attenuation, can be represented using a reduced basis, substantially decreasing the dimension of the search space. We determine the feasibility of the method and its robustness to ambiguity with 2D synthetic examples. The 3D inversion of a field data set for a geologic medium with transversely isotropic anisotropy in velocity indicates the feasibility of the method for inverting large-scale real seismic data and improving the data fitting. The principal benefits of the semiglobal multiparameter inversion are the recovery of the intrinsic attenuation from the data and the recovery of the true undispersed infinite-frequency P-wave velocity, while mitigating ambiguity between the estimated parameters.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. B311-B324 ◽  
Author(s):  
Laura Gassner ◽  
Tobias Gerach ◽  
Thomas Hertweck ◽  
Thomas Bohlen

Evidence for gas-hydrate occurrence in the Western Black Sea is found from seismic measurements revealing bottom-simulating reflectors (BSRs) of varying distinctness. From an ocean-bottom seismic data set, low-resolution traveltime-tomography models of P-wave velocity [Formula: see text] are constructed. They serve as input for acoustic full-waveform inversion (FWI), which we apply to derive high-resolution parameter models aiding the interpretation of the seismic data for potential hydrate and gas deposits. Synthetic tests indicate the applicability of the FWI approach to robustly reconstruct [Formula: see text] models with a typical hydrate and gas signature. Models of S-wave velocity [Formula: see text] containing a hydrate signature can only be reconstructed when the parameter distribution of [Formula: see text] is already well-known. When we add noise to the modeled data to simulate field-data conditions, it prevents the reconstruction of [Formula: see text] completely, justifying the application of an acoustic approach. We invert for [Formula: see text] models from field data of two parallel profiles of 14 km length with a distance of 1 km. Results indicate a characteristic velocity trend for hydrate and gas occurrence at BSR depth in the first of the analyzed profiles. We find no indications for gas accumulations below the BSR on the second profile and only weak indications for hydrate. These differences in the [Formula: see text] signature are consistent with the reflectivity behavior of the migrated seismic streamer data of both profiles in which a zone of high-reflectivity amplitudes is coincident with the potential gas zone derived from the FWI result. Calculating saturation estimates for the potential hydrate and gas zones yields values of up to 30% and 1.2%, respectively.


Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 765-784 ◽  
Author(s):  
Andrzej Górszczyk ◽  
Stéphane Operto ◽  
Laure Schenini ◽  
Yasuhiro Yamada

Abstract. Imaging via pre-stack depth migration (PSDM) of reflection towed-streamer multichannel seismic (MCS) data at the scale of the whole crust is inherently difficult. This is because the depth penetration of the seismic wavefield is controlled, firstly, by the acquisition design, such as streamer length and air-gun source configuration, and secondly by the complexity of the crustal structure. Indeed, the limited length of the streamer makes the estimation of velocities from deep targets challenging due to the velocity–depth ambiguity. This problem is even more pronounced when processing 2-D seismic data due to the lack of multi-azimuthal coverage. Therefore, in order to broaden our knowledge about the deep crust using seismic methods, we present the development of specific imaging workflows that integrate different seismic data. Here we propose the combination of velocity model building using (i) first-arrival tomography (FAT) and full-waveform inversion (FWI) of wide-angle, long-offset data collected by stationary ocean-bottom seismometers (OBSs) and (ii) PSDM of short-spread towed-streamer MCS data for reflectivity imaging, with the former velocity model as a background model. We present an application of such a workflow to seismic data collected by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and the Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) in the eastern Nankai Trough (Tokai area) during the 2000–2001 Seize France Japan (SFJ) experiment. We show that the FWI model, although derived from OBS data, provides an acceptable background velocity field for the PSDM of the MCS data. From the initial PSDM, we refine the FWI background velocity model by minimizing the residual move-outs (RMOs) picked in the pre-stack-migrated volume through slope tomography (ST), from which we generate a better-focused migrated image. Such integration of different seismic datasets and leading-edge imaging techniques led to greatly improved imaging at different scales. That is, large to intermediate crustal units identified in the high-resolution FWI velocity model extensively complement the short-wavelength reflectivity inferred from the MCS data to better constrain the structural factors controlling the geodynamics of the Nankai Trough.


Sign in / Sign up

Export Citation Format

Share Document