scholarly journals What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates

2021 ◽  
Vol 15 (8) ◽  
pp. 3751-3784
Author(s):  
Ruth Mottram ◽  
Nicolaj Hansen ◽  
Christoph Kittel ◽  
J. Melchior van Wessem ◽  
Cécile Agosta ◽  
...  

Abstract. We compare the performance of five different regional climate models (RCMs) (COSMO-CLM2, HIRHAM5, MAR3.10, MetUM, and RACMO2.3p2), forced by ERA-Interim reanalysis, in simulating the near-surface climate and surface mass balance (SMB) of Antarctica. All models simulate Antarctic climate well when compared with daily observed temperature and pressure, with nudged models matching daily observations slightly better than free-running models. The ensemble mean annual SMB over the Antarctic ice sheet (AIS) including ice shelves is 2329±94 Gt yr−1 over the common 1987–2015 period covered by all models. There is large interannual variability, consistent between models due to variability in the driving ERA-Interim reanalysis. Mean annual SMB is sensitive to the chosen period; over our 30-year climatological mean period (1980 to 2010), the ensemble mean is 2483 Gt yr−1. However, individual model estimates vary from 1961±70 to 2519±118 Gt yr−1. The largest spatial differences between model SMB estimates are in West Antarctica, the Antarctic Peninsula, and around the Transantarctic Mountains. We find no significant trend in Antarctic SMB over either period. Antarctic ice sheet (AIS) mass loss is currently equivalent to around 0.5 mm yr−1 of global mean sea level rise (Shepherd et al., 2020), but our results indicate some uncertainty in the SMB contribution based on RCMs. We compare modelled SMB with a large dataset of observations, which, though biased by undersampling, indicates that many of the biases in SMB are common between models. A drifting-snow scheme improves modelled SMB on ice sheet surface slopes with an elevation between 1000 and 2000 m, where strong katabatic winds form. Different ice masks have a substantial impact on the integrated total SMB and along with model resolution are factored into our analysis. Targeting undersampled regions with high precipitation for observational campaigns will be key to improving future estimates of SMB in Antarctica.

2019 ◽  
Vol 32 (20) ◽  
pp. 6899-6915 ◽  
Author(s):  
A. Gossart ◽  
S. Helsen ◽  
J. T. M. Lenaerts ◽  
S. Vanden Broucke ◽  
N. P. M. van Lipzig ◽  
...  

Abstract In this study, we evaluate output of near-surface atmospheric variables over the Antarctic Ice Sheet from four reanalyses: the new European Centre for Medium-Range Weather Forecasts ERA-5 and its predecessor ERA-Interim, the Climate Forecast System Reanalysis (CFSR), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The near-surface temperature, wind speed, and relative humidity are compared with datasets of in situ observations, together with an assessment of the simulated surface mass balance (approximated by precipitation minus evaporation). No reanalysis clearly stands out as the best performing for all areas, seasons, and variables, and each of the reanalyses displays different biases. CFSR strongly overestimates the relative humidity during all seasons whereas ERA-5 and MERRA-2 (and, to a lesser extent, ERA-Interim) strongly underestimate relative humidity during winter. ERA-5 captures the seasonal cycle of near-surface temperature best and shows the smallest bias relative to the observations. The other reanalyses show a general temperature underestimation during the winter months in the Antarctic interior and overestimation in the coastal areas. All reanalyses underestimate the mean near-surface winds in the interior (except MERRA-2) and along the coast during the entire year. The winds at the Antarctic Peninsula are overestimated by all reanalyses except MERRA-2. All models are able to capture snowfall patterns related to atmospheric rivers, with varying accuracy. Accumulation is best represented by ERA-5, although it underestimates observed surface mass balance and there is some variability in the accumulation over the different elevation classes, for all reanalyses.


2020 ◽  
Author(s):  
Ruth Mottram ◽  
Nicolaj Hansen ◽  
Christoph Kittel ◽  
Melchior van Wessem ◽  
Cécile Agosta ◽  
...  

Abstract. Antarctic ice sheet mass loss is currently equivalent to around 1 mm year−1 of global mean sea level rise. Most mass is lost due to sub-ice shelf melting and calving of icebergs. Ice sheet models of the Antarctic ice sheet have thus largely concentrated on parameterising sub-shelf and calving processes. However, surface mass balance (SMB) is also of crucial importance in controlling the stability and evolution of the vast Antarctic ice sheet. In this paper we compare the performance of five different regional climate models (COSMO-CLM2, HIRHAM5, MAR3.10, MetUM and RACMO2.3p2) in simulating the near surface climate and SMB of Antarctica. Our results show that, when regional climate models (RCMs) are forced by the ERA-Interim reanalysis, the integrated Antarctic ice sheet ensemble mean annual SMB is 2329 ± 94 Gigatonnes (Gt) year−1 over the common 1987 to 2015 period. However, individual model estimates vary from 1961 ± 70 to 2519 ± 118 Gt year−1. The large differences are mostly explained by different SMB estimates in West Antarctica and the peninsula as well as around the Transantarctic mountains. The calculated annual average SMB is very sensitive to the period chosen but over the climatological mean period of 1980 to 2010 the ensemble mean is 2486 Gt year−1. The interannual variability in SMB is consistent between the models and dominated by variability in the driving ERA-Interim reanalysis. The declining trend in Antarctic SMB reported in other studies is also very sensitive to period chosen and models disagree on the sign and magnitude of the trend in Antarctic SMB over the ERA-Interim period. Evaluation of models shows that they simulate Antarctic climate well when compared with daily observed temperature (Pearson correlation of 0.85 and higher) and pressure (bias ranges from −0.39 hPa in HIRHAM5 to −6.01 hPa in MAR with a mean of −3.49 hPa over all models) and nudged models, constrained within the domain as well as at lateral boundaries, perform better than un-nudged models. We compare modelled surface mass balance with a large dataset of observations which, though biased by undersampling in some regions, indicates that many of the biases in modelled SMB are common between models. The inclusion of drifting snow schemes improves modelled SMB on ice sheet slopes between 1000 and 2000 m where strong katabatic winds form but other regions where precipitation rates are high lack observations needed for the evaluation of different SMB estimates. Different ice masks have a substantial impact on the integrated total SMB and along with model resolution is therefore factored into our analysis. The majority of the different values for continental SMB are due to differences in modelled precipitation at relatively few grid points in coastal areas. Our analysis suggests that targeting coastal areas for observational campaigns will be key to improving and refining estimates of the total surface mass balance of Antarctica.


2018 ◽  
Author(s):  
Cécile Agosta ◽  
Charles Amory ◽  
Christoph Kittel ◽  
Anais Orsi ◽  
Vincent Favier ◽  
...  

Abstract. The Antarctic ice sheet mass balance is a major component of the sea level budget and results from the difference of two fluxes of a similar magnitude: ice flow discharging in the ocean and net snow accumulation on the ice sheet surface, i.e. the surface mass balance (SMB). Separately modelling ice dynamics and surface mass balance is the only way to project future trends. In addition, mass balance studies frequently use regional climate models (RCMs) outputs as an alternative to observed fields because SMB observations are particularly scarce on the ice sheet. Here we evaluate new simulations of the polar RCM MAR forced by three reanalyses, ERA-Interim, JRA-55 and MERRA2, for the period 1979–2015, and we compare our results to the last outputs of the RCM RACMO2 forced by ERA-Interim. We show that MAR and RACMO2 perform similarly well in simulating coast to plateau SMB gradients, and we find no significant differences in their simulated SMB when integrated over the ice sheet or its major basins. More importantly, we outline and quantify missing processes in both RCMs. Along stake transects, we show that both models accumulate too much snow on crests, and not enough snow in valleys, as a result of erosion-deposition processes not included in MAR, where the drifting snow module has been switched off, and probably underestimated in RACMO2 by a factor of three. As a consequence, the amount of drifting snow sublimating in the atmospheric boundary layer remains a potentially large mass sink needed to be better constrained. Moreover, MAR generally simulates larger SMB and snowfall amounts than RACMO2 inland, whereas snowfall rates are significantly lower in MAR than in RACMO2 at the ice sheet margins. This divergent behaviour at the margins results from differences in model parameterisations, as MAR explicitly advects precipitating particles through the atmospheric layers and sublimates snowflakes in the undersaturated katabatic layer, whereas in RACMO2 precipitation is added to the surface without advection through the atmosphere. Consequently, we corroborate a recent study concluding that sublimation of precipitation in the low-level atmospheric layers is a significant mass sink for the Antarctic SMB, as it may represent ∼ 240 ± 25 Gt yr-1 of difference in snowfall between RACMO2 and MAR for the period 1979–2015, which is 10 % of the simulated snowfall loaded on the ice sheet and more than twice the surface snow sublimation as currently simulated by MAR.


2021 ◽  
Author(s):  
Nicolaj Hansen ◽  
Sebastian Bjerregaard Simonsen ◽  
Fredrik Boberg ◽  
Christoph Kittel ◽  
Andrew Orr ◽  
...  

Abstract. Regional climate models compute ice sheet surface mass balance (SMB) over a mask that defines the area covered by glacier ice, but ice masks have not been harmonised between models. Intercomparison studies of modelled SMB therefore use a common ice mask. The SMB in areas outside the common ice mask, which are typically coastal and high precipitation regions, are discarded. Ice mask differences change integrated SMB by between 40.5 to 140.6 Gt yr−1, (1.8 % to 6.0 % of ensemble mean SMB), equivalent to the entire Antarctic mass imbalance. We conclude there is a pressing need for a common ice mask protocol.


2016 ◽  
Author(s):  
Bianca Kallenberg ◽  
Paul Tregoning ◽  
Janosch F. Hoffmann ◽  
Rhys Hawkins ◽  
Anthony Purcell ◽  
...  

Abstract. Mass balance changes of the Antarctic ice sheet are of significant interest due to its sensitivity to climatic changes and its contribution to changes in global sea level. While regional climate models successfully estimate mass input due to snowfall, it remains difficult to estimate the amount of mass loss due to ice dynamic processes. It's often been assumed that changes in ice dynamic rates only need to be considered when assessing long term ice sheet mass balance; however, two decades of satellite altimetry observations reveal that the Antarctic ice sheet changes unexpectedly and much more dynamically than previously expected. Despite available estimates on ice dynamic rates obtained from radar altimetry, information about changes in ice dynamic rates are still limited, especially in East Antarctica. Without understanding ice dynamic rates it is not possible to properly assess changes in ice sheet mass balance, surface elevation or to develop ice sheet models. In this study we investigate the possibility of estimating ice dynamic rates by removing modelled rates of surface mass balance, firn compaction and bedrock uplift from satellite altimetry and gravity observations. With similar rates of ice discharge acquired from two different satellite missions we show that it is possible to obtain an approximation of ice dynamic rates by combining altimetry and gravity observations. Thus, surface elevation changes due to surface mass balance, firn compaction and ice dynamic rates can be modelled and correlate with observed elevation changes from satellite altimetry.


2019 ◽  
Author(s):  
Quentin Dalaiden ◽  
Hugues Goosse ◽  
François Klein ◽  
Jan T. M. Lenaerts ◽  
Max Holloway ◽  
...  

Abstract. Improving our knowledge of the temporal and spatial variability of the Antarctic Ice Sheet (AIS) Surface Mass Balance (SMB) is crucial to reduce the uncertainties of past, present and future Antarctic contributions to sea level rise. Here, we show that Global Climate Models (GCMs) can reproduce the present-day (1979–2005) AIS SMB and the temporal variations over the last two centuries. An examination of the surface temperature–SMB relationship in model simulations demonstrates a strong link between the two. Reconstructions based on ice cores display a weaker relationship, indicating a model-data discrepancy that may be due to model biases or to the non-climatic noise present in the records. We find that, on the regional scale, the modelled temperature-SMB relationship is stronger than the relationship between δ18O-temperature. This suggests that SMB data can be used to reconstruct past surface temperatures. Using this finding, we assimilate isotope-enabled model SMB and δ18O output with ice-core observations, to generate a new surface temperature reconstruction. Although an independent evaluation of the skill is difficult because of the short observational time series, this new reconstruction outperforms the previous reconstructions for the continental-mean temperature that were based on δ18O alone with a linear correlation coefficient with the observed surface temperatures (1958–2010 CE) of 0.73. The improvement is largest for the East Antarctic region, where the uncertainties are particularly large. Finally, we provide a spatial SMB reconstruction of the AIS over the last two centuries showing 1) large variability in SMB trends at regional scale; and 2) a large SMB increase (0.82 Gt year−2) in West Antarctica over 1957–2000 while at the same time, East Antarctica has experienced a large SMB decrease (−3.3 Gt year−2), which is consistent with a recent reconstruction.


2021 ◽  
Vol 15 (3) ◽  
pp. 1215-1236
Author(s):  
Christoph Kittel ◽  
Charles Amory ◽  
Cécile Agosta ◽  
Nicolas C. Jourdain ◽  
Stefan Hofer ◽  
...  

Abstract. The future surface mass balance (SMB) will influence the ice dynamics and the contribution of the Antarctic ice sheet (AIS) to the sea level rise. Most of recent Antarctic SMB projections were based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5). However, new CMIP6 results have revealed a +1.3 ∘C higher mean Antarctic near-surface temperature than in CMIP5 at the end of the 21st century, enabling estimations of future SMB in warmer climates. Here, we investigate the AIS sensitivity to different warmings with an ensemble of four simulations performed with the polar regional climate model Modèle Atmosphérique Régional (MAR) forced by two CMIP5 and two CMIP6 models over 1981–2100. Statistical extrapolation enables us to expand our results to the whole CMIP5 and CMIP6 ensembles. Our results highlight a contrasting effect on the future grounded ice sheet and the ice shelves. The SMB over grounded ice is projected to increase as a response to stronger snowfall, only partly offset by enhanced meltwater run-off. This leads to a cumulated sea-level-rise mitigation (i.e. an increase in surface mass) of the grounded Antarctic surface by 5.1 ± 1.9 cm sea level equivalent (SLE) in CMIP5-RCP8.5 (Relative Concentration Pathway 8.5) and 6.3 ± 2.0 cm SLE in CMIP6-ssp585 (Shared Socioeconomic Pathways 585). Additionally, the CMIP6 low-emission ssp126 and intermediate-emission ssp245 scenarios project a stabilized surface mass gain, resulting in a lower mitigation to sea level rise than in ssp585. Over the ice shelves, the strong run-off increase associated with higher temperature is projected to decrease the SMB (more strongly in CMIP6-ssp585 compared to CMIP5-RCP8.5). Ice shelves are however predicted to have a close-to-present-equilibrium stable SMB under CMIP6 ssp126 and ssp245 scenarios. Future uncertainties are mainly due to the sensitivity to anthropogenic forcing and the timing of the projected warming. While ice shelves should remain at a close-to-equilibrium stable SMB under the Paris Agreement, MAR projects strong SMB decrease for an Antarctic near-surface warming above +2.5 ∘C compared to 1981–2010 mean temperature, limiting the warming range before potential irreversible damages on the ice shelves. Finally, our results reveal the existence of a potential threshold (+7.5 ∘C) that leads to a lower grounded-SMB increase. This however has to be confirmed in following studies using more extreme or longer future scenarios.


2013 ◽  
Vol 7 (2) ◽  
pp. 469-489 ◽  
Author(s):  
X. Fettweis ◽  
B. Franco ◽  
M. Tedesco ◽  
J. H. van Angelen ◽  
J. T. M. Lenaerts ◽  
...  

Abstract. To estimate the sea level rise (SLR) originating from changes in surface mass balance (SMB) of the Greenland ice sheet (GrIS), we present 21st century climate projections obtained with the regional climate model MAR (Modèle Atmosphérique Régional), forced by output of three CMIP5 (Coupled Model Intercomparison Project Phase 5) general circulation models (GCMs). Our results indicate that in a warmer climate, mass gain from increased winter snowfall over the GrIS does not compensate mass loss through increased meltwater run-off in summer. Despite the large spread in the projected near-surface warming, all the MAR projections show similar non-linear increase of GrIS surface melt volume because no change is projected in the general atmospheric circulation over Greenland. By coarsely estimating the GrIS SMB changes from GCM output, we show that the uncertainty from the GCM-based forcing represents about half of the projected SMB changes. In 2100, the CMIP5 ensemble mean projects a GrIS SMB decrease equivalent to a mean SLR of +4 ± 2 cm and +9 ± 4 cm for the RCP (Representative Concentration Pathways) 4.5 and RCP 8.5 scenarios respectively. These estimates do not consider the positive melt–elevation feedback, although sensitivity experiments using perturbed ice sheet topographies consistent with the projected SMB changes demonstrate that this is a significant feedback, and highlight the importance of coupling regional climate models to an ice sheet model. Such a coupling will allow the assessment of future response of both surface processes and ice-dynamic changes to rising temperatures, as well as their mutual feedbacks.


2016 ◽  
Author(s):  
Xavier Fettweis ◽  
Jason E. Box ◽  
Cécile Agosta ◽  
Charles Amory ◽  
Christoph Kittel ◽  
...  

Abstract. With the aim of studying the recent Greenland Ice Sheet (GrIS) Surface Mass Balance (SMB) decrease with respect to the last century, we have forced the regional climate MAR model (version 3.5.2) with the ERA-Interim (1979–2015), ERA-40 (1958–2001), NCEP-NCARv1 (1948–2015), NCEP-NCARv2 (1979–2015), JRA-55 (1958–2014), 20CRv2(c) (1900–2014) and ERA-20C (1900–2010) reanalysis. While all of these forcing products are reanalyses assumed to represent the same climate, they produce significant differences in the MAR simulated SMB over their common period. A temperature adjustment of +1 °C (respectively −1 °C) improved the accuracy of MAR boundary conditions from both ERA-20C and 20CRv2 reanalyses given that ERA-20C (resp. 20CRv2) is 1 °C colder (resp. warmer) over Greenland than ERA-Interim over 1980–2010. Comparisons with daily PROMICE near-surface observations validated these adjustments. Comparisons with SMB measurements from PROMICE, ice cores and satellite derived melt extent reveal the most accurate forcing data sets for simulating the GrIS SMB to be ERA-Interim and NCEP-NCARv1. However, some biases remain in MAR suggesting that some improvements need still to be done in its cloudiness and radiative scheme as well as in the representation of the bare ice albedo. Results from all forcing simulations indicate: (i) the period 1961–1990 commonly chosen as a stable reference period for Greenland SMB and ice dynamics is actually a period when the SMB was anomalously positive (~ +10 %) compared to the last 120 years; (ii) SMB has decreased significantly after this reference period due to increasing and unprecedented melt reaching the highest rates in the 120 year common period; (iii) before 1960, both ERA-20C and 20CRv2 forced MAR simulations suggest a significant precipitation increase over 1900–1950 although this increase could be the result of an artefact in reanalysis not enough constrained by observations during this period. These MAR-based SMB and accumulation reconstructions are however quite similar to those from Box (2013) after 1930, which confirms the Box (2013)'s stationarity assumption of SMB over the last century. Finally, the ERA-20C forced simulation only suggests that SMB during the 1920–1930 warm period over Greenland was comparable to the SMB of the 2000's due to both higher melt and lower precipitation than normal.


Sign in / Sign up

Export Citation Format

Share Document