Supplementary material to "Assessment of NASA airborne laser altimetry data using groundbased GPS data near Summit Station, Greenland"

Author(s):  
Kelly M. Brunt ◽  
Robert L. Hawley ◽  
Eric R. Lutz ◽  
Michael Studinger ◽  
John G. Sonntag ◽  
...  
2017 ◽  
Vol 11 (2) ◽  
pp. 681-692 ◽  
Author(s):  
Kelly M. Brunt ◽  
Robert L. Hawley ◽  
Eric R. Lutz ◽  
Michael Studinger ◽  
John G. Sonntag ◽  
...  

Abstract. A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface–elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface–elevation biases for these altimeters – over the flat, ice-sheet interior – are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.


2016 ◽  
Author(s):  
Kelly M. Brunt ◽  
Robert L. Hawley ◽  
Eric R. Lutz ◽  
Michael Studinger ◽  
John G. Sonntag ◽  
...  

Abstract. A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based GPS surveys of an 11,000 m long track near Summit Station, Greenland, to assess the surface elevation bias and measurement precision of three airborne laser altimeters, including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of 8 airborne lidar surveys associated with ATM and LVIS. Surface elevation biases for these altimeters, over the flat, ice-sheet interior, are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Results from the analyses of ground-based and airborne data provide guidance for validation strategies for ICESat-2 elevation and elevation-change data products.


2015 ◽  
Vol 527 ◽  
pp. 1006-1020 ◽  
Author(s):  
Yongxue Liu ◽  
Minxi Zhou ◽  
Saishuai Zhao ◽  
Wenfeng Zhan ◽  
Kang Yang ◽  
...  

2021 ◽  
Vol 13 (16) ◽  
pp. 3062
Author(s):  
Guo Zhang ◽  
Boyang Jiang ◽  
Taoyang Wang ◽  
Yuanxin Ye ◽  
Xin Li

To ensure the accuracy of large-scale optical stereo image bundle block adjustment, it is necessary to provide well-distributed ground control points (GCPs) with high accuracy. However, it is difficult to acquire control points through field measurements outside the country. Considering the high planimetric accuracy of spaceborne synthetic aperture radar (SAR) images and the high elevation accuracy of satellite-based laser altimetry data, this paper proposes an adjustment method that combines both as control sources, which can be independent from GCPs. Firstly, the SAR digital orthophoto map (DOM)-based planar control points (PCPs) acquisition is realized by multimodal matching, then the laser altimetry data are filtered to obtain laser altimetry points (LAPs), and finally the optical stereo images’ combined adjustment is conducted. The experimental results of Ziyuan-3 (ZY-3) images prove that this method can achieve an accuracy of 7 m in plane and 3 m in elevation after adjustment without relying on GCPs, which lays the technical foundation for a global-scale satellite image process.


Sign in / Sign up

Export Citation Format

Share Document